
Young supertableaux of the basic Lie superalgebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 5755

(http://iopscience.iop.org/0305-4470/20/17/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 16:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 5755-5821. Printed in the U K  

Young supertableaux of the basic Lie superalgebrast 
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DCpartement de Physique Thiorique, Universite de Gentve, 121 1 Gentve 4, Switzerland 

Received 5 December 1985. in final form 19 June 1986 

Abstract. Among the simple Lie superalgebras (LSA),  the basic classical ones are well 
known, together with many of their finite-dimensional representations. This is particularly 
true for the typical representations which are known to be completely reducible. 

It is well known that reducible but indecomposable representations of the basic LSA 

are not completely characterised by their highest weight ( H W )  or the eigenvalues of their 
Casimir operators. In fact, there may be several different finite representations characterised 
by the same H W .  Such representations are called non-typical or atypical. 

The aim of this paper is to establish a complete characterisation of the typical and 
non-typical representations by means of properly defined Young supertableaux (YST). 
Therefore, the definition we are going to use for our YST differs slightly from the standard 
definitions. The examples given throughout this paper help the illustration of this new 
interpretation for the YST which makes possible the complete classification of the indecom- 
posable representations characterised by a generalised notion of HW. 

1. Introduction 

Since 1978 many authors have attempted to present, in a less abstract manner, the 
general results obtained by Kac in his fundamental paper Representations of Classical 
Lie Superalgebras (Kac 1978). 

Many approaches to the representations of these superalgebras were successful: 
by their explicit construction from the H W  according to the above-mentioned paper 
(Farmer and Jarvis 1984, Hurni and Morel 1982, 19831, generalisation of Young 
tableaux to the LSA case (Abramsky and King 1970, Balantekin and Bars 1981, Bars 
et al 1983, King 1970, 1982), super Gel’fand-Zetlin bases (Chen and Chen 1983), the 
method of creation and annihilation operators (Dun-Sang Tang 1984), superfields 
(Farmer and Jarvis 1983) and so on (see, for example, Scheunert (1985) and references 
therein). 

As physicists, several authors were by tradition essentially interested in the finite- 
dimensional irreducible representations ( I R )  of the simple Lie algebras ( LA) (partially 
because of the complete reducibility theorem for the finite representations and partially 
because of their unitarisability in the compact case: the case of the gauge theories) 
and stuck to this attitude in the LSA case. 

However, complete reducibility is not valid for all the simple LSA (in fact, the 
osp( l /N)  are the only exceptions for which complete reducibility does hold), and not 
even for the so-called basic ones which are the closest to the simple LA (the other 
simple LSA do not have Cartan matrices). Finite reducible but indecomposable 
representations may appear by simply making the tensor product of irreducible 
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representations ( I R ) .  We sal1 them semi-reducible representations ( S R R ) .  They are 
usually perceived as pathologic and indirectly this paper aims to fight this idea. In 
fact, the SRR share many properties with some infinite-dimensional indecomposable 
representations of the LA. 

In contrast to the irreducible case, there is no complete classification of the finite 
SSR. Only the ones defined by their H W  are known, as soon as we have recognised the 
many invariant subspaces of the maximal representation ( M R )  built from a given highest 
weight. It remains to divide this M R  by each of its invaliant subspaces to get all the 
inequivalent SRR and the I R  having this same HW. 

Another category of SRR is introduced in this paper: the representations charac- 
terised by a pseudo-highest weight ( P H W ) .  Note that in the setting of the LA, such 
PHW are needed to characterise the infinite unitarisable I R  of the non-compact semi- 
simple Lie algebra. 

For su( N ) ,  Young tableaux (YT) have two possible meanings. 
Firstly, they explain in which manner an I R  may be obtained by the tensor product 

El of the standard N-dimensional representation denoted c]. For example m and 

are the I R  obtained by taking the symmetrised (respectively antisymmetrised) tensor 
product of the standard representation by itself. 

If we denote the basis vectors of 0 by the N covariant vectors t ’ ,  i = 1,. . . , N,  

then the t N ( N S 1 )  ones of m and the ;N(N-1) ones of are denoted by 

T‘”) = ( tit' + t ’ t ’ )  and T[”] = ( t Y  - t ’ t ’ )  respectively. 
The contravariant vectors t , ,  i = 1,. . . , N, which describe the complex conjugate 

representationm, are linearly related to the covariant ones by the totally antisymmetric, 

El 

invariant, Levi-Civita E tensor. Since = N - l ,  contravariant indices are 

superfluous. !I 
Tensor products of arbitrary I R  may be reduced using a simple algorithm: the 

Littlewood-Richardson rule (Hammermesh 1962, Littlewood 1950). For example 

Secondly, YT can be used as a graphical notation in order to specify the non-negative 
integers a, (given by the formula U ,  = 2(A, a i ) / (a i ,  a,), where A is the H W  and the CY, 

are the simple roots of su( N ) )  which characterise completely the finite-dimensional 
I R .  These numbers, also called Dynkin labels or indices, are usually written as the 
components of the so-called ‘highest weight vector’ a = ( a , ,  . . . , uN- , ) ;  however, in 
order to avoid confusion when considering other types of L(S)A, we will write them in 
a Dynkin diagram, above the nodes corresponding to the simple roots: 

c+ &--- 4, =\  , 

+ 
a\ , 
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In the s o ( N ) ,  sp(N) ,  E, ,  E , ,  E , ,  F4 and G2 cases, the ‘double interpretation’ of 
the YT fails in the following sense: the YT obtained according to the Littlewood- 
Richardson rule as for su( N )  now describe reducible representations. For example, if 
0 denotes the fundamental I R  of so( N )  we have 

o o o = m o B  
w h e r e m d e n o t e s a d i r e c t s u m o f a ( f N (  N +  1) - 1)-dimensional IR(= DIIR). whose 
basis vectors are given by t ’ t ’ i  t’t’-(l/N)(Z:=, t k t k ) ,  and a one-dimensional IR,  

spanned by the vector (l/N)(Z;=, t k t k )  which is obtained from the symmetrised 
product by contraction of the indices. Therefore the YT of this last representation is 
obtained from m by deleting the two boxes, 1 =m. 

Note that i f  complete reducibility did not hold and if the 1 were the only ideal 

in the symmetrised product 0 6 0, m should have been denoted by mIR 1, instead of m I R  1, and written as in the spirit of the present 
paper ( 0  6 ) .  

From these remarks, it is apparent that m, without a subscript, may have two 
different meanings: m ,p (referred to as the tensor interpretation (T-YT)), or 
(highest-weight interpretation ( HW-YT)) .  In general, only the tensor interpretation of 
the YT is used. In fact, no confusion may arise in the LA case, due to the complete 
reducibility. For the same reason, the interpretation in terms of highest weights of 
these YT are completely understood and unambiguous, allowing another kind of ‘double 
interpretation’. 

Although the reductions of the tensor products are more difficult than for su( N ) ,  
there are now very well established rules available for s o ( N )  and s p ( N )  (Black et a1 
1983, Dehuai et a1 1981) (and to a more limited extent for exceptional LA (Bowick 
and Wybourne 1977, King and Al-Qubanchi 1981)) and can be used for quite substantial 
representations by hand. For example, concerning so( N ) ,  V N,  we have 

m n 
U S~S=EEG U H 

where in principle the T-YT describe IR ,  with 
U 

some exceptions like 

2 n n 

in the so(8) case. 

Remark. The decreasing number of boxes on the RHS of (1.1) can be seen as generalised 
contractions of pairs of tensorial indices. From that point of view, the interpretation 
of the tensor products for spinor representations requires the use of more sophisticated 
YT (Fischler 1981, Girardi er af 1982, 1983, King and El-Sharkaway 1983). 

Since LSA are more complicated than LA, the possibility of defining YST fully compatible 
with the two above-mentioned interpretations seems improbable. Due to the difficulties 
encountered in a complete description of the supertensor products, as is seen for the 
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type-1 LSA in 8 8; YST are realised here in the ‘notation interpretation’ spirit (HW-YST) 

until that section. 
A second reason for this choice was to know if it is possible, through a graphical 

notation, to obtain a particular feeling about the characterisation of the important 
class of atypical representations which are known to have very specific highest weights. 
To use YST for such a purpose is quite natural, provided it is possible to define YST 

satisfying the following demands. 
(i) As for the YT, the highest weight should be easily recognised. 
(i i)  The description of the representation has to be completely determined by the 

YST, which implies an easy determination of the possible invariant subspaces. 
(iii) These YST should help the comprehension of a special property for the so-called 

type-2 LSA, namely the consistency conditions which necessarily should be satisfied 
by the HW. 

(iv) To be as suggestive as possible of the characteristics of the supertensorial 
indices which describe the representations. 

YST satisfying all these conditions for su( m / n )  and osp( m/ n), and many of the 
conditions for the exceptional LSA, are defined throughout § §  3, 6 and 9, thus giving 
a positive answer to the above-mentioned question. 

In § 2 we recall what the basic LSA are and how their highest weight-maximal 
representations (HW-MR)  are made. In § 3 we propose Young supertableaux describing 
these representations in the su(m/n)  and osp(m/n)  cases. In § 4 we give some ways 
to determine the possible ideals of such representations. In § 5 we describe SRR which 
can be defined only through a generalised notion of highest weight. We call them the 
pseudo-highest-weight representations ( PH w representations). In § 6 we have success- 
fully established in a systematic way the correspondence between all these representa- 
tions and supertableaux. In 9 7 we present briefly some results which may be obtained 
with the help of the (P)HW-YST. In § 8  a new kind of YST is introduced which is 
apparently better adapted for the illustration of some tensor product rules than are 
the (P)HW-YST. In 9 9 we define YST for the exceptional LSA. 

We also present in the conclusions some considerations on strange and Cartan-type 
LSA, and we speculate about the existence of YST for a class of more exotic SRR than 
the ones defined in § 5. 

Finally, the tables are collected in appendix 1. 

2. Maximal representations with highest weight 

2.1. Simple Lie superalgebras 

A LSA is by definition a Z,-graded LA, G = Go+ GT, for which the following commuta- 
tion relations hold: 

(i) [Go, Go] c Go; thus Go is an ordinary LA; 

(ii) [Go, G T ] ~  GT; thus G, is a Go module; 
(iii) {Gi, Gi}c Go, where { , } means the anticommutator. 
As for the Lie algebras, G is said to be simple if it contains no non-trivial ideal. 

All the complex simple LSA have been classified (Kac 1977, Scheunert 1979), and as 
such are listed in table Al .  

The few isomorphisms among simple LSA are given in table A2, and some other 
notations that we encounter in the literature are shown in table A3. 
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In this paper we are only interested in the basic LSA, table A4. Essentially, the 
basic LSA are analogous to the finite simple LA. In these cases the Cartan subalgebra 
H of G coincides with that of Ga and we have G = H 0 (0 G,) (where dim G, = 1 Va,  
except for A(1 , l ) )  and A =  A o + A ,  is the root system of G. 

The Cartan-type LSA are the finite analogues of infinite-dimensional Cartan-Lie 
algebras, and the simple LSA which have no direct LA analogue are called ‘strange’ 
(although the Q( n) may be the finite analogues of the loop algebras su( n)@ C[x, x-’1). 

Before revealing some additional information about the structure of the basic LSA 

in table A4, clarification of certain points is needed. 
( i )  The superdimension of a Z2-graded space is, by definition, the dimension of 

the even space minus the dimension of the odd one; for example, sdim G =  
dim Ga -dim Gi; and when V denotes a representation of G, sdim V = dim Va - dim Vi. 

( i i )  When an odd space is completely reducible (irreducible) the LSA is said to 
be of type 1 (type 2). 

A summary of the properties of the roots, simple roots, Dynkin diagrams and 
Cartan matrices of these LSA is given in tables A6 and A7. Precise definitions of these 
objects, bilinear forms and other definitions were given previously in Kac (1977, 1978). 
We simply recall the following. 

( a )  A particular property or the standard weights E , ,  8, is sgn( E , ,  E , )  = -sgn( a,, - 8,). 
This implies that the norm of some odd roots may be degenerate: A I =  
{a ~ A , l ( a ,  a)=O}. In the case of osp(l /2n)  and G(3), there exists odd roots a such 
that 2 a  E Ao, thus implying ( a ,  a )  f 0 for them. 

( b )  In a Kac-Dynkin diagram the simple even roots a E A. are denoted by a 
traditional white circle 0, by a grey one 0 if a E A , ,  or by a black one 0 if a E ( A l \ A , ) .  

(c)  For a given basic LSA there may exist many systems of simple roots inequivalent 
under Weyl reflections, but it is always possible to find a system of simple roots with 
only one odd root called /3 in table A6 and a,  in the rest of this paper. In this paper 
the Weyl group is taken to be that of Go, although a consistent definition of a Weyl 
group for the whole LSA was given recently (Leites et al 1985). In particular D( m, n) 
and C ( m ,  n )  will sometimes denote in this paper the two Weyl-inequivalent systems 
of simple roots of osp(2m/2n). 

( d )  The standard definitions of the Cartan matrices and Dynkin diagrams of su(n), 
so(2n+l ) ,  sp(2n), so(2n) and G, are stated in table A5. They are part of the 
corresponding definitions for the LSA in tables A6 and A7. 

The relationship between any of the above-mentioned Cartan matrices A with 
entries a,, = (A),, and the corresponding simple root system is given by a,, = 
2(a, ,  a, ) / (a , ,  a , ) .  For the LSA other than osp( l /N)  this definition has to be modified 
when the simple odd root is involved: a,, = 2(a, ,  a s ) / ( a , ,  a , )  again if i f s, but in any 
case a,, = (as, a,). Since ass = 0, we are free to choose the normalisation = +l. 

Remark 1 .  su(n /n)  is the central extension of A(n - 1, it - 1) = su(n/n) /Z2,  where 
Z2,  is the ideal generated by lzn .  The next considerations about su( m /  n) I R  and SRR, 

m f n, do apply also for su(n/n) ,  but do not apply for A( n - 1, n - l),  whose representa- 
tions will not be studied in this paper. 

2.2. Representations of the basic Lie superalgebras 

Let Had,  E,, ,  E - ,  be the generators of a LSA where the Ha, form a basis of the Cartan 
subalgebra H. The E + , ( E - a )  act as raising (respectively lowering) operators and the 
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commutation relations among these generators are given by 

[Hu,, &I = 0 L E U ! ,  = ' t JHU,  V a t ,  aJ 

[Ha,, E*,,] = *auE*,, where the ai, are the components 
of the Cartan matrix 

N ( a ,  a')E,+,, if a + C Y ' €  A 
[ E , ,  E , . ) = (  otherwise. 

Then a representation V(A)  with highest weight A E H* are characterised in the 
following way. There is a particular vector ~ A ) E  V(A)  such that 

E+ulA)=O V a  E A + ,  the set of positive roots (RI) 
Hu,IA)= UilA)  (R2) 

and we get all the remaining vectors spanning the representation by applying success- 
ively the lowering generators E-, to IA). 

The Dynkin indices a, corresponding to the simple roots a, are defined as 

a, = 2(A,  at)/(aE, a,) 

as = (A,  as) 

where a, is the only simple odd root. 
The values of the arts  are directly related to the dimensionality of V(A): 

a, E Z+U{O} implies ( E-u,  I k / A )  # 0 V k  3 0 (2.4) 

and hence V(A) is infinite dimensional. 

(E-,,)~IA) # 0 and ( E-u, )k+' lA)  = 0 implies k = a, (2.5) 

and thus U ,  E Z,u{O} is clearly required for finite dimensionality. 
More generally the commutation relations (2.1) and (2.5) imply (2.6): 

( E - , ) k ( u ) l A )  = 0 (2.6) 

where k ( a )  = 2 ( A + p ,  a ) / ( a ,  a) and where p = p o - p l  is defined in such a way that 

(P,ai) ' f (a , ,  at) (2.7) 

in particular ( p ,  as) = o (explicitly p p  = a, p = 0,1). 

can compute the set N of non-typical values (table A l l ) :  
The value of a, is related to the atypicality of V(A):  using (2.2) (2.3) and (2.7) we 

N={a,=a,(a, , , )  such that ( A + p , a ) = O  for some  EA,}. 

For the type-1 LSA, since coincide with A , ,  we have { E - , ,  E - , }  =0, hence 
( E-,)'[A) = 0, V a  E A l .  Therefore the analogues of (2.4)-(2.6) are 

if a, E N, i.e. V(A)  is typical, then 
E-,lA) f 0, V a  E A ,  (however, E-,lA) f 0, V a  E A ,  
does not imply always typicality) (2.4') 

Edur1A) = 0 implies a, =0, this condition coming 
from ( A  + p, a,) = 0. (2.5') 
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From (2.4') we immediately obtain 

if there is an a E A ,  such that K a 1 A )  = 0, 
then a, allow ( A + p , a ' ) = O  for some  EA,. (2.6') 

For the type-2 LSA, the situation is not so simple; however, the important point is 
that any E-,IA) = 0 implies a value for a, which is called atypical, as for type-1 LSA. 

In both cases the converse is not true: given a non-typical as ,  there can exist a non-zero 
vector ~ X ) E  V(A) that we obtain by applying the odd generators E - ,  to lA) such that 
E+,,I,y) = 0, V a , .  Hence ,y is the highest weight of an invariant subspace I ( A )  c V(A).  

In fact a quite similar phenomenon already occurs in the LA case: let the non-negative 
integers a, determine, say, Vo(A). If some Ix)= ( E - , , ) a ~ + ' l A )  does not vanish, then 
E+,I,y) = 0 again, V a .  This implies the existence of a maximal invariant subspace Zo(A) 
of Vo(A), In contrast to the LSA case, both Vo(A) and [,(A) are necessarily infinite, 
however, in such a way that Vo(A),R= Vo(A)/Io(A) is the unique finite representation 
specified by the a , .  

As an alternative to the rules (R l )  and (W), the above superrepresentation V(A) 
can be characterised by the same rule (R l )  but where the a, are now the simple roots 
of G,; while in place of (R2), HuslA)= a,lA) we have to consider the rules (R2'): 

QlA)= qIA), Q being, for the type-1 LSA other than su(n/n),  the u(1) generator 
commuting with the whole even subalgebra, or 

CIA)= CIA), C being the centre of su(n /n) ,  or (E') 
&]A)= blA),  Ha being, for the type-2 LSA, the generator of the Cartan subalgebra 

corresponding to the Ga-simple root 6 which is not a G-simple root. 
Thus b also has to be a non-negative integer for having finite V(A).  

The expressions for these generators are given in table A8. 
In particular, we see that for the type-2 LSA (some D(2,1, a )  excepted), a,  is 

necessarily a non-negative rational number. For these LSA, some additional constraints 
on the Dynkin indices (table A9) appear occasionally. The origin of these constraints, 
also called 'consistency conditions', will be explained later. 

In contrast any complex number is allowed for q or c, each value being known to 
specify a particular one-dimensional I R  of the Abelian part of the even subalgebra. 
Thus there is no need of additional restrictions on the a, for the type-1 LSA, the 
representations defined in this manner also being finite because of the nilpotency of G-, . 

The atypicality conditions arising from ( A +  p, a )  = 0 are sometimes easier to get 
when the odd roots a, given previously in tables A6 and A7 in terms of the fundamental 
weights E , ,  S,, are given (table A10) in terms of the simple roots a,. In particular, table 
Al l  gives the general expressions for these non-typicality conditions in terms of the 
Dynkin indices. 

For the type-1 LSA, each root a provides a non-typicality condition in every case. 
For the type-2 LSA, i t  is even more comprehensive to express the non-typicality 
conditions in terms of the Dynkin indices of the even subalgebra, as is done in table A12. 

(i) Consequently there can be no non-typicality conditions associated with the 
roots a = S I  of B ( m ,  n), or a = S  of G(3), a result obvious from (2.6) since 
2 ( 1 1 , 2 a ) / ( 2 a , 2 a ) = k ( 2 a ) ~ Z + U { O } .  Thus 2(A+p, a ) / ( a ,  a ) z f k ( 2 a ) + l > O ,  what- 
ever the above a stand for. 

(i i)  This is again the case with the roots a = S ,  - E, of E ( m ,  n), D ( m ,  n), D(2,1, a )  
and G(3), when the values of b do not imply the consistency conditions. For F(4), 
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the same effect happens when considering the roots 6 f E ,  + E * +  and 8 + E ,  - E ~ +  E ) .  

However, for small values of b, these roots can provide accidental non-typicality 
conditions. 

(iii) In constrast, no general considerations forbid the non-typicality conditions 
associated with the roots of the 6, + E] type ( 6  * E ,  * - E ~ +  E~ for F(4)). 
Therefore, only these non-typicality conditions are the true analogues of the type-1 
LSA non-typicality conditions. 

- E~ and 6 - 

2.3. Maximal representations of the type-1 LSA 

In this subsection we indicate briefly how to build the unique maximal representation 
( M R )  specified by a H W  in the type-1 LSA case. 

The &-graded type-1 LSA G = Ga+ Gi  have furthermore an additional consistent 
Z grading, in particular the following one: 

I 

G = Q  G, with G 8 + J  

, = - I  

where Go= GG and the roots of G+, (respectively G-l)  are the positive (respectively 
negative) odd roots. 

By our definition of A we have E,lh) = 0 V a  E A + .  Thus in particular we have 
G+,lA)=O. The even generators applied to lA)  give, in the standard way, the Go 
representation that we call Vo(A). We note that G+,V,(A)=O as [Go, G , l l c  G + , .  
Then Vo(A) can also be seen as a kind of non-faithful I R  of the non-semisimple LSA 
P = Go@ G,, . Therefore, on Vo(A), as we have {G-, , G-,} = 0, we can only apply a 
completely antisymmetric combination of the odd generators belonging to G-, , giving 
maximally the following representation of G: 

built from V,(A) by induction of the generators of GIP;  hence the notation V(A)  = 
Indg Vo(A) in Kac (1978). 

AkG-, means the kth completely antisymmetric tensor product of G-I with itself. 
Thus dim G-,  = N implies dim(AkG-,) = (r). Therefore we obviously have for type-1 
LSA 

N mn for su( m/n)  
2 n  for osp(2/2n) N = [ dim V(A)MR= 1 (r) dim V0(A) = 2 ”  dim VO(A) 

k = O  

N 

sdim V ( 2 1 ) M R =  (-ilk(:) dim V,(A)=O. (2.10) 
k = O  

Definition. The YT corresponding to an irreducible representation of the LA su( m) + 
s u ( n ) + u ( l )  is given by two YT, each one corresponding to a s u ( N )  factor, and an 
eigenvalue for the U (  1).  Similarly the YT of a sp(2n) + u(  I ) - IR  is the sum of a s p ( 2 n ) - m  
and a number. 
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In terms of the G 0 - n  we have, more explicitly, for su(m/n):  

A ~ G - ,  = 

A boxer 

(2.11) 

- k  

k boxes 

where the sum is taken over all the inequivalent pairs of tableaux, each having k boxes 
and the su( m )  tableau being the su( n )  one, transposed. The meaning of the dot in 
the boxes is explained in § 1. Thus the columns of 1 dotted boxes are equivalent 
to the columns of ( m  - 1 )  undotted boxes, e.g. 

( -  k )  is the integer we have to add to the q value of the highest weight since we have 

0 when Q E A. 
when Q E A , '  [Q,  L 1 =  { * E , ,  

Therefore the Z grading of the LSA induces a 2 grading of the representation. Some 
examples are 

&&oMR = 

El, 
q - 1  

+ E-, + [ - 3  )=E,+ (El'+[) 

(2.13) 

(2.14) 
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Alternatively, we can see su( m/ n )  as a supersymmetric analogue of su( m + n )  and 
supersymmetrise the usual branching of su( m + n) into su( m) + su( n )  + U( 1) (Bars et 
a1 1983). However, we do  not usually obtain V ( L I ) ~ ~  with this procedure; for example, 
the su(3/M) supersymmetrised version of the su(3 + M )  representation 

U------& 
leads to the following V(A),R: 

, €F+ 

where means here p, and so on. 

(2.15) 

For su( n /  n )  the only difference from su( m/ n)  is that all the su( n) + su( n )  + U( 1) 
multiplet have the same c value, C, commuting with the whole superalgebra. 
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For osp(2/2n) 

A ~ G - , =  [k’21 I=  1 (I] k - 2 1 )  

- k  

(2.16) 

where [k/2] denotes the integer part of k/2. Therefore 

(2.17) 

2.4. Representations of osp( 1/2n) 

The osp(l/2n) is the only class among all the simple LSA that does not possess 
non-typical representations. For that reason complete reducibility holds for their 
representations. 

The G,j= sp(2n) content of V(A)  = W .  9 .- is easy to exhibit: given 
a, a2 

01 01 on.! b = : a ,  

the YT of Vo(A) = w.. , the action of GT1 on V, is to destroy a 
box of the starting YT. Since {G-l, G-,} c: 6 we must keep all the sp(2n)-rr  obtained 
from that of Vo(A) by removing at most one box from each row, e.g. 

gives r+[ + p + m  +o 
of sp(2n). It is easy to verify that 

the one-to-one correspondence between weights of osp( 1/2n) and so(2n + 1) IR being 
well known (Rittenberg and Scheunert 1982). We can calculate from Kac (1978) that 
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2.5. Maximal representations of Osp( M/2n) ,  M 3 3 

Considering the former osp( 1/2n) example, we remark that V(A) is no longer construc- 
ted by the usual induction of G - ,  on Vo(A). In fact, we have implicitly followed the 
theorem for the realisation of the type-2 MR (Kac 1977): 

V(A)MR = Indg Vo(A)/ U (  G)G!:' Vo(A). (2.20) 

The ideal M ( A ) =  U(G)G!:'Vo(A) is non-trivial only when the Dynkin index b 
takes some specific values (see table A9). To be precise, when b s [ M / 2 ] ,  both 
Ind: Vo(A) and U(G)Gk'g'VO(.4) are infinite, as we shall see later. 

(*) in terms of Ga representations as 
the G-,, present in the formula Vo(A)@(XY=oAkG-l) ,  does not by itself give a Gs 
representation; it is the whole Gi (=G+,OG-,) which gives the fundamental Gij 
irreducible representation. In fact, (*) is a subspace of 

The first difficulty is to express Indg VJA) 

(2.21) 

Definition. The operator T = ZLl: k hk + n * H8 when applied to \ A )  counts the number 
of boxes in the sp(2n) part of the YT specifying VdA).  

Lemma. /A)  belongs to the subspace specified by the s o ( M ) + s p ( 2 n ) - ~ ~  which has 
the most boxes in its sp(2n) part. 

ProoJ: We have [ T,. E,,] = *E,, V a  E A , .  Thus T plays a role similar to Q for the 
type-1 LSA (except now that [ T ,  Er2a]=*2E1Z, when 2 a € A O ) .  As for Q we have 
[ T, XI = 0, VX = E,, , ,  E Go. Let TlA) = tiA), then the oiher eigenvalues of T can 
only be smaller, the corresponding eigenvectors being obtained by applications of the 
E-, on IA). 

Tnis operator will help us to select inside (**) a subspace containing (*) as we shall 
see in the following example where we are interested in the o s p ( M / 2 n ) - ~ ~ ,  V ( A ) M R ,  
specified by the following sp(2n) + SO(M)-IR: 

I \ 

(2.22) 

There is a natural embedding of the ( M  +2n)-dimensional o s p ( M / 2 n ) - 1 ~  into the 
standard s u ( M / 2 n ) - 1 ~  one. Therefore the s u ( M / 2 n ) - r ~  (2.15), which we shall call 
W, is also an osp(M/2n)  representation but where the su(M) and s u ( 2 n ) - m  are now 
describing reducible so( M )  and sp( 2n) representations. 

In particular a s u ( 2 n ) - 1 ~ ,  whose YT is made of k boxes, decomposes into many 
s p ( 2 n ) - i ~ ,  whose respective YT are made of k -2 j  boxes, j = 0,1, . . . , [k/2] (a  similar 
phenomenon also appears when the branching of su( M )  into so( M )  is considered). 
Hence, T separates W into orthogonal subspaces according to the branching of the 

su( 2 n )  -1R into sp(2n)-IR: 
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E+@+@+ + 

denote the set of YT which looks like (2.15), but where now the left boxes 
describe s p ( 2 n ) - 1 ~  and the right boxes continue to describe the p;evious reducible 
s o ( M )  representations (the u(1) factor is irrelevant here). Thus V(A)  is therefore 
clearly a subspace of W, and furthermore is also a subspace of (**). 

In particular we note that inside W the above-mentioned so( M )  + sp(2n) rep- 
resentation V,(A) is the one having the highest T eigenvalue. Therefore W necessarily 
contains at least V(A)IR according to the lemma. 

Lemma 2. In the typical case, ?(A) coincides with V ( A ) T .  

Proof: The above arguments may be generalised for any Vo(A) where the s o ( M )  part 
is trivial, giving a corresponding ?(A) in the general case of 

a ,  0 2  an-! a , = b  0 0 0  O-Q-. . .- X . . .* 
or 

0 
n 

a,., an = b 
. . .  

'0, 
we can then check that dim ?(A) 2 9, where 

(2.23) 

The equality holds if and only if b 2 M - 1; in that case, we also have sdim F(A)  = 0. 
But if b 2 M,  the representation is typical and we know by Kac's formula that 

dim V(A)  = 9 and sdim V(A)  = 0. Therefore we conclude that in the typical case 
?(A) = V(A) .  

If 6 < M and all the s o ( M )  indices a, are zero, then the representation is non-typical. 
The complete reducibility of ?(A) seems to hold in this case: ?(A) = V(A)lRO V 
implying V(A)MRz V(A)lR. 

Remark. Contrary to the type-1 LSA, where in the atypical case dim V ( A ) i R <  the typical 
dimension formula, for type-2 LSA we can have dim V(A)iR> 9. This is fortunate 
since we would get 9 < 0 when b < M / 2 .  

Generally, when the s o ( M )  part is non-trivial: 

a " - ,  b a " * ,  

or 
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the dimension formulae for typical representations 

dim V(A)  = 9 dim Vso(M) (2.24) 

sdim V(A)  = 0 (2.25) 

imply 

V ( A ) M R =  Q(A)O(l, V s o ( ~ ) )  if b z M - 1 .  

If M / 2  < b < M - 1, then V(A) can be typical. Thus we have dim V(A>, < 
9. dim Vso(M). This implies that 

v ( A )  = ?(A)O(l ,  Vso(M)) 

is completely reducible: v( A) = V( AIT@ V'. Similarly, in the non-typical case we have 
V(A) = V(A)MR@ V' when b < M - 1. 

Note that V' in general is not an osp( M/ N )  representation, but a finite-dimensional 
subspace of v ( A ) ,  which has to be merged with some infinite-dimensional so( M )  + 
sp( N )  subspaces of Indg Vo(A) in order to make up M = U (  G)Gfl'g' Vo(A). The origin 
of these infinite subspaces in Indg Vo(A) is the following. 

Firstly, let A ,  denote the set of roots of the 6, - E ,  type, then we have 

* E * ,  V a  E A ,  
if a E A ,  - A ,  

(2.26) 

Therefore each E-u,  = E - ( 6 n - E , )  subtracts one unit from b when applied to any Ir). 
Secondly, the vector Ix) = E-uhE-,b- ,  . . . E-.r2E-,,lA) which clearly belongs to 

Ind? Vo(A)= V o ( A ) O ( X ~ o A k G - l )  satisfies E + , l A ) = O ,  V a c A , .  Thus x is also a 
s p ( 2 n ) - ~ w .  However, according to (2.26), its Dynkin index b = 2 ( x ,  6)/(6, 6 )  = -1. 
Then dim Ind? Vo(A) = m .  Thus it is necessary that E + , 5 1 ~ ) = 0  in order for x to be 
the highest weight of the infinite-dimensional invariant subspace M = U (  G)Gbi' Vo(A). 
Indeed, if E+,I,y) f 0, then Ix) belongs to V(A)IR, implying unavoidably dim V(A)IR = 

A simple calculation show that E,,, E + ,  . . . E + , , / x )  is proportional to a,(a,  -a,+, - 
Co. 

1) . . . (a ,  - a,,, -. . . -antb - b)(A),  i.e. to 
m m 

1=2 i = b + l  

where in+, =fa,,+,,,  for B ( m ,  n )  or = ~ ( U ~ + ~ - ~ - U , , + ~ )  for D(m, n); otherwise 

We see that this expression vanishes, allowing finite dimensionality, if and only if 
the corresponding consistency condition, table A9, holds. In other words, a consistency 
condition is nothing other than a necessary non-typicality condition in order to have 
finite-dimensional representations. 

The pieces of v ( A )  that we should reject in order to get V(A)MR are those 
incompatible with the supersymmetrisation of s o ( M + 2 n )  (Morel et a1 1985). In fact, 
the o s p ( M / N ) - ~ s r  are precisely defined in the next section in order to illustrate this 
incompatibility. The rule is the following: reject a piece if the s o ( M )  part of the YT 
cannot take place in the osp( M/ N ) - Y S T  transposed. 

The following example is for osp(M/6) .  If Vo= [ m9 B) of sp(6)+so(M) 

I a.  = a .  
I 1 .  
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then 

is expected to be in V ( A ) M R ,  but cannot be in V ( A ) M R  since 

=i 
V(A)MR. 

A more complete treatment of 
Hurni and Morel (1982) and Morel 
for osp(3/2). 

is the YST corresponding to I where 

asp( M/61 

the osp( M /  N )  representations can be found in 
et a1 (1985). We present here only the final results 

0 )  0 2  

Let , t h e n  V , ( A ) = ( b + l , a , + l )  is the ((b+l).(a2+l))-dimensional I R  

of su(2) +su(2) = sp(2) +s0(3), b = a ,  - $ a 2 .  Then 

V ( A ) M R =  ( b  + 1, a2S 1) + ( b ,  ( a 2 + 3 )  + ( a * +  1) + ( a z  - 1)) 

+ ( b -  1, (a2+3)  + ( U , +  1) + ( U , -  1)) + ( b  -2, a2+ 1). 
Thus 

dim v( A)MR = Z3( b - $ + 1)( U,  + 1) 

sdim V( A ) M R  = 0. 

In the non-typical case a ,  = a,+ 1, i.e. b = 1 +;a2 ,  we have in general 

(2.27) 

V(A)IR= ( b  + 1, U,+ 1) + ( b ,  (a,+3) + ( U , +  1)) + ( b -  1, a,+ 3) 

Z(A) = ( b ,  a2 - 1) + ( b  - 1, (a2+ 1) + ( ~ 2 -  1)) + ( b  -2, a,+ 1). 
(2.28) 

Thus 
dim V(A)lR = 4 b ( a 2 +  2) - 2 

dim Z(A) = 4 ( b  - l ) (a2)  -2  

sdim Z(A) = -sdim V(A)lR = 2. 

Some exceptions ( a 2  = 0) and the atypical case a ,  = 0 are discussed in Farmer and 
Jarvis (1983). 

2.6. Exceptional LSA 

These are also type-2 LSA. Thus their MR are built in the same way as B ( m ,  n )  or 
D(m, n ) .  In particular, we now have 

1 
l + a  

T = - ( 2 h l -  hz -ah , )  (2.29) 
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G ( 3 )  

F ( 4 )  

T = i (  /I, - 2hz - 3h3) 

T = f ( 2 h ,  - 3 hz -4h3 - 2/14). 

Thus T is the same time the su(2) Cartan subalgebra generator. 
When b 3 dim G-, , I n d g  V,- V(A)MR coincides with v(A) where 

= { ( b +  1,1,  l ) + ( b ,  2 ,2)  
1 . b=- 

' l + a  

+ ( b - l , 3 ,  l ) + ( b - 1 ,  1 , 3 ) + ( b - 2 , 2 , 2 ) + ( b - 3 ,  1, 1)} 

O ( 1 ,  a 2 + l ,  a 3 + l )  ofsu(2)+su(2)+su(2) .  

Thus dim V ( A ) ~ ~ = 2 ~ ( b - l ) ( U z + l ) ( U 3 + 1 ) .  

; b = +( a ,  - 202 - 3 ~ 3  = ( {  ( b  + 1,1)  + (b, 7) 

(2.30) 

(2.31) 

(2.32) 

+ ( b  - 1 ,14+7) )  + ( b  -2 ,27  + 7  + 1 ) +  ( b  - 4 , 1 4 + 7 )  + ( b  - 5 , 7 )  

+ ( b - 6 ,  l )}@(l ,  &)o f su (2 )+G2 .  (2.33) 

Thus dim V(A)MR = 2'{( b - 7/2) + 1)} dim . (" ) 
; b = f ( 2 a l -  3a2  - 4 ~ 3  - 2a4) = {( b + 1, 1 )  + (b, 8) ) 

(iii) v(- 0 2  0 ,  04 

+ ( b  - 1 ,21+7)  + ( b  -2 ,48+  8)  + ( b  -3 ,35+27+  7 +  1) 

+ ( b  -4 ,48  + 8 ) +  ( b  - 5 , 2 1 + 7 )  

+ ( b  - 6 , 8 )  + ( b  -7,1))@(1, M) of su(2) +s0(7).  (2.34) 

Thus dim V(A)MR=28{(b-9 /2)+1} *dim(*). 

All these dimension formulae correspond in fact exactly to those of the typical IR. 
Moreover, the superdimension of all these M R  are always vanishing, in agreement with 
the superdimension formulae (Kac 1978) for the typical I R .  

3. Young supertableaux 

3.1. Generalisation of Fischler's YT 

We consider here YST corresponding to the Kac-Dynkin diagrams for s u ( m / n )  and 
osp (M/2n)  representations (in general, they will correspond to the HW-MR) .  They 
were established by trial and  error, the main justification of their respective shapes is 
that they satisfy the requirements presented in the introduction, as will be proved in 
the next section. If these YST are similar or essentially equivalent to YST previously 
defined in earlier works (see Balantekin and Bars (1981), Bars et a1 (1983) and  Dondi 
and  Jarvis (1981) for su( m/  n) and Farmer and  Jarvis (1984) and  Morel et aI (1985) 
for osp(M/2n)),  this is certainly not a coincidence. In particular, the correspondence 
between the su(m/n)-YsT of this paper and  those of Bars et al (1983) is precisely 
stated in § 8. The YST describing the remaining non-MR are discussed in § 6. 
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Instead of generalising to the LSA case the Girardi-Sciarino and Sorba YT (some 
of them have 'negative boxes' (Girardi er al 1982, 1983)) or the strange-looking King 
YT (King and El-Sharkaway 1983) we decide to generalise the Fischler YT (Fischler 
1981). The differences among them are significant, especially for the spinor representa- 
tions, but since we are mainly interested in the 'notation of the highest weight' 
interpretation of the YST (HW-YST) as opposed to the 'tensor' interpretation (T-YST), 
and that all the finite spinor representations are typical, the generalisation of the 
Fischler YT is sufficient for our purpose. 

According to this work, the YT of s u ( N ) ,  s o ( N )  and s p ( N )  have at the most N 
rows and are almost completely characterised by the IR since 

(i) columns with n boxes can be removed or added to give an equivalent s u ( n ) - n ;  
(ii) S O ( M ) - Y T  with more than [M/2]  rows is equivalent to SO(M)-YT having at 

the most [M/2]  rows, since there exists a tensor 8 which changes columns made of 
k boxes into columns made of M - k boxes; 

(iii) the same is true for s p ( N ) - n  with the help of a tensor which is a s p ( N )  
invariant (Fischler 1981). 

Consequently, there is a unique YT completely characterised by the Dynkin indices 
where the columns have k e R boxes ( R  = rank of the algebra) each. 

Let c, be the number of columns with i boxes of a YT, then Fischler's conventions 
are as follows. 

( i )  For s u ( n +  1 )  and sp(2n): c, = a, ,  V i .  

0, 0" 

( i i )  For s o ( 2 n S l )  -...* the rules are c, = a , ,  V i e  n - 1  and 

c, = [a,/2]. If  a, is odd we have to add an arrow t in front of the YT, i.e. 

(iii) For so(2n), the rules are more complicated: 

c , = a i  i s n - 2  ~ , - ~ = m i n ( a , - , , a , )  ~,=[I (a , -~-a , )1 /2] .  

Furthermore we have to add 
8 .  

u , - , - u ,  =2k 

a,- I - a, = 2k + 1 

- U,, = 2k + 1 .  

if an < ? , - I  
a star * 
an arrow 1 if s a, 

an arrow .1 if a,-l > a, 
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Examples are 

Because of the isomorphisms so(3) = 4 2 )  and so(4) =su(2) +su(2) we obtain the 
following equivalences: 

SUI2) + SU(2) .  
J. = (1.0) 

S0!4) 

In Abramsky and King (1970) and King (1970) mixed YT (made both of dotted 
and undotted boxes) were explicitly introduced for the description of u( M )  and su( M )  
IR,  and subsequently generalised for u(  m / n )  and su( m / n )  in Dondi and Jarvis (1981) 
and King (1982). In particular, the similarity of the rules for the respective branching 
of U( m + n )  versus the branching of U( m / n )  into u( m )  + U (  n) is striking. Although in 
the su( m + n )  case these mixed YT are equivalent to the conventional ones, their use 
allows easy rules for the branching into su( m )  + su( n )  +U( 1) (Bars et al 1983). On the 
other hand, the necessity of the use of mixed YST in the u(m/n)  and su(m/n)  cases 
is clear. Their adjoint representations themselves cannot be described by any conven- 
tional YST. 

3.2. Type-1 LSA 

For both su(m/n)  and osp(2/2n) we will first take into consideration the case a,€ Z. 

following YST: 
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L E., Y 

The eigenvalue of the u(1) generator being 

1 
q = - [ n  ( #  covariant boxes 0) - m ( #  contravariant boxes m)]. n - m  

Clearly, to simultaneously add k columns of m covariant indices and k columns of n 
contravariant indices does not change the Dynkin indices. 

Note that the following non-typicality condition: 

is in the YST: 

b ,+(m - i )  = b ; + ( n  - j ) .  

4, a2 4 3  4" 

For osp(2/2n - 2) ' . .- we propose the following YST: 

q = b ,  - b ,  Os k, s ' 

Evidently, many YST describe the same HW. Nevertheless, in any case the following 
non-typicality conditions can be read from the YST according to the following: 

but (*) is equivalent to 6, - 6, = bj - 62,,-,-, + 2n - 2 - j ,  n s j  s 2 n  - 2 ,  thus giving a 
unified characterisation of the non-typical YST when j varies between 1 and 2 n  - 2 .  

When a, is a non-positive complex number, we consider Ia,4 = [Re(a,)], the integer 
part of the real part of a,, for the YST, and we place the number a,-Ia,I in front of 
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so(2m + I I { 

the YST in order to give additional information which cannot be obtained by manipulat- 
ing tensorial indices, the number playing the same role as the arrow for the spinorial 
YT. 

3.3. Type-2 LSA osp( M/2n) 

In the case M = 1, according to § 2.4, it seems logical to identify the YST shape of a n  
o s p ( l / 2 n ) - r ~  with the YT shape of the corresponding so(2n + ~ ) - I R :  

When M 2 3, the virtue of the following YST is that they automatically incorporate 
the consistency conditions. 

For osp(2m + 1/2n)  
0, a , , ,  a , ,  a " * ,  a"*", 

-. . . . . .* 
or 

where b = a,, - a,,+l - .  . .-a,,+,,,-, -fan+,,,. 
( a )  Tensor YST ( a m t n  = 2k) 

sp(2n l  

b, 

h: 

b = b ;  

( b )  Spinor YST. When amtn = 2k + 1 we have to add in front of the previous YST 

For D(m,  n )  
an arrow, as in the B,, case. 
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or 

where b =  ~ , , - a , , + ~ - .  . . - a n t m - 2 - f ( a n + m - l + a n t m ) .  
( a )  Vector YST ( a n + m - l + a n + m  = 2 k ) .  
(i) When S an+,,,, the following YST should be considered with J = u , , + ~ - ~  

and k = f( an+,,, - a n + , - , ) :  

b - b ;  

(ii) When 

( b )  Spinor YST ( a n + m - l + a n + m  = 2 k + l ) .  
( i )  When u , , + , , - ~ ~ u ~ + ~ ,  consider the above YST with j = a n + m - l ,  k =  

( i i )  When > a,+,, the procedure is similar and we have to consider the 

3 an+,, take j = an+,, k = f ( ~ , , + , - ~  -an+,,,) and add a star * in 
front of the YST, as in the D, case. 

$(an+, 

above YST with j = 

- 1) and add the arrow t. 

k = f (antm-,  - - 1) and add the arrow &. 

4. Identification of the invariant subspaces 

We present here three methods for singling out the invariant subspaces of a MR.  

The first method consists in the explicit realisation of the expressions for the vectors 
Ir) where the weights r a r e  the highest with respect to the even subalgebra and determine 
under which conditions these r are also HW of the whole superalgebra. In practice 
the realisation of the so-called 'lower highest weight' as in Hurni and  Morel (1982, 
1983) is so tedious that it justifies the search for more attractive methods. Therefore 
we just give an  example for su(1/3) (low-dimensional o s p ( M / N )  are treated in that 
way in Farmer and Jarvis (1984)). 

According to 9 2 ,  a S U ( ~ / ~ ) - M R  is made of several s u ( 3 ) + u ( l ) - r ~ ,  each one being 

consists 
at 0 1 

specified by a su(3) + U( 1)-Hw that we shall call r,. For example, 
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of 

4 = f ( 3 U l - l ) .  

The even roots of su(1/3) are in A. = { * ( E ,  - E , ) } ,  i Zj = 1,2,3,  and the odd ones in 
A I  = { * ( e o -  et)},  i = 1,2 ,3 .  The generators b: = E+,EO-E,) and b, = E-(EO-E,) are in a 3T, 
(respectively 3-1) of su (3 )+u( l ) .  For convenience we will also denote the E,,  by a+ 
and the E - ,  simply by a. 

By definition of the G o - ~ w  r ,  we should have a:lT,) = a:lr,) = 0 V r t .  If b:/T,) it 0 
then r, is not a highest weight of su(1/3). 

When b:lr,)=O, as is explained in $ 2, we have two possibilities: either r, is the 
highest weight of an  invariant subspace or this presumed invariant subspace is in fact 
completely decoupled. 

Direct calculations for each Vo(Tt) give the following table: 

and b:lr) is equal to 

Thus, as we should, we recover the non-typicality conditions a ,  = 0, a ,  = a2+  1 = 1 and 
a, = a2 + a3 + 2 = 3. 

Consulting the above table, we see that r(3$-3) can never be the H W  of an  invariant 
subspace; fortunately since the only ‘trivially graded’ representation is the one- 
dimensional one. r (3q -2 )  cannot be a candidate since we go back to the g q - ,  (respec- 
tively the lq - ] ) ,  when a ,  = 1 (respectively 3). 

Then we have 

0 0 1  

= (3T,,,+ or (3T1,,+ 1 - 3 , 2 ) ~ ( 8 - 3 , ? + 6 T 5 , 2 + 3 - 5 , 2 + 3 T 7 ! 2 )  

= ( 3 f + 8 0 + 1 0 + 3 ~ 1 ) o r ( 3 f + 8 0 + l o + 3 - 1 ) ~ ( 6 ~ 1 + 3 ? 2 )  
1 0 1  

3 9  I @--o--Q = (34*+g3+6?) or (3; +X3+6,*) (3 ( 1 3 + 3 2 + 3 r ) .  

In particular, note that in each invariant subspace 

This leads to the second method. 
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Let q( i) be the U( 1) eigenvalue associated to each Vo(r i ) ,  then the supertrace of 
the operator Q in this representation is given by 

STr Q = (-l)"-q""q( i)  dim V0(ri). 

As any invariant subspace of V(A)MR should satisfy STr Q = 0 it is easy to verify if a 
space built from a given Ir,) can be a candidate for such a subspace. In our former 
example, we have the following. 

( i )  From lq - l  we can envisage building the subspace Z('4) = 1,-, +3,-,+ 3$-3 (since 
6$-2$ 14-1@3-,), but STr Q = O  iff q =4, i.e. a ,  =3.  We already know that in this case 
I ( A )  is the good one. 

(ii) Z(A) = 3q-2-t3&3 can never have STr Q = 0. 
( i i i )  Z(A) =3z-3 has STr Q=O for q =3,  i.e. a, =;, but it is not a non-typicality 

condition. 
(iv) Z(A) = 1,-, has STr Q = 0 for q = 1, i.e. a, = 1, a true non-typicality condition, 

and furthermore lo is a true su( 1/3) representation. However, we know from the first 
method that in fact this presumed I ( A )  is not an invariant subspace. For this reason 
we must be careful about the second method which derives from a necessary but 
insufficient condition. 

Remark. In the case of su(n /n)  we have 

STr C = C ( - l ) d e g v o " i ) ~ . d i m  V,(T,)=c*sdimZ(A) 
( 1 1  

c being constant for the whole V ( A ) M R .  Since we must have STr C = 0, this implies 
sdim V(A)IR= sdim Z(A) = 0 when c # 0. 

The third (YST) method comes from the observation that, if the non-typicality 
condition ( A +  p, a) = 0 holds for a given a,  then x = A - CY is the highest weight of 
Z(A) if the vector Ix) really exists in V0(A)@G-, . The comparison of the respective 
YST of V(A) and Z(A) is in fact meaningful. 

(i)  su(m/n) .  Let an H W  be such that the non-typicality condition 
m - l  

( A + p , a ) = O =  C (a ,+ l )+a , -  f, ( a r + l )  
r = a  i = m + l  

holds. Then we already know the corresponding YST satisfies b, - i + m = b; - j + n. 
Finally, when we compute the YST corresponding to x = A - a, we see that we can 
obtain it from the former by simply removing a covariant box from the b,th row and 
a contravariant one from the 6 t h  row. 

Intuitively this consists in contracting these indices in order to single out a YST 

which characterises Z(A). 
According to that point of view, one may suspect that, when Vo(A- a)$ Vo(A)O 

G-, , we are obliged to remove more than one pair of boxes in order to get a legal YST 

characterising this Go representation. This is indeed the case. 
I - 4  

Example 1 .  Let V " ), then we have the su(3/2) non-typicality 
condition a ,  + a,+ a3 - a,+ 1 = 0. The simplest corresponding YST is 
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Now ( i )  tells us that we have to remove a box in the blst row and another one in the 
&st row, but this last one cannot be removed without the first box of the b;nd row in 
order to have a well behaved YST. Thus we have to remove a second covariant box. 

By using the second method we find that the following YST , where 

the crossed boxes denote deleted boxes, cannot describe an invariant subspace of 
V(A). In fact, the removal of two boxes in the blst row, which is the only possible 
solution permitting the removal of no more than two pairs of boxes, is the correct 
solution: 

Remark Being obliged to contract more than one pair of indices means that, in spite 
of the non-typicality of V(A) ,  we have E a 1 A )  # 0, V a  E A l .  This confirms the assertion 
(2.4’). 

If the resulting (legal) YST does not describe any possible Z(A), we again have to 
remove other boxes from the bith and 6 t h  rows considered above. 

Example 2. In su(3/5) seems to be able to describe 

0 0 0 0 0 0 0  

MR 

since b,+(m -3) = b;+ ( n  - 5 ) ,  b,+ ( m  -2 )  = 6 4 + ( n  - 4 )  and b, + ( m  - 1) = b;+ ( n  -3). 

But we cannot describe the respective Z(h) by which have to 

imply the following Z ( i i ) o :  the (3*, 5)-1,  (3, lo)-, and (1, 
only the (3*, 5 ) - ,  really figures in 

respectively. However, 

V(A)MR={(l, 1)0+(3*, 5)-1+(6*, IO)-2+(3, 15)-2+(1,35)-3+. . . + ( I ,  1 ) - 1 5 } .  

Such is not the case for the (3, lo)-, and (1, 
According to Hurni and Morel (1983), the HW r, of the invariant subspaces V, are 

in fact those of the (3*, 5 ) - , ,  (6,50)-, and (1,175)-,, where more precisely we have 

Iri) (A)  

Ir,) = b:Irl) 

Ir,) = 6: b: b:/T,) 
(r,) = b: * b: a 6; * b: * b;(T,) 

where the b; denote the generators corresponding to the roots a = - (a l  + qCl +. . . + CY,). 
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As Jri) = 0 implies Irj) = 0 for j > i, we have 

V(A),R= V I @ ( V ~ @ ( V ~ G  V4)). 

By factorisation of the invariant subspaces, the other possible indecomposable 
representations are 

V(A)’= Vl@(V2@ V,) 

V( A)” = Vi @ V, 

V(A)‘” = V, , the trivial one-dimensional IR. 

In particular, it is impossible to have VI @ V3 or any other combination of irreducible 
subspace. 

Consequently, we have to take at least in order to describe 

V(A)MR ; the highest weight of all the invariant subspaces being characterised, respec- 
tively, by the YST obtained by simply deleting the crossed boxes mentioned: 

and 

For the same reason, 

tfJ 
V(A)”’, respectively. 

, and 1 describe at best V(A)’, V(A)” and 

These two examples provide an illustration of the (heuristic) third method. 
(i) Let V(.A) be described by a YST such that bi - i + m = 6 - j  + n. Then we get 

the YST characterising the invariant subspace Z(A) by deleting one covariant box from 
the b,th row and another contravariant one in the 6 t h  row. 

( i i )  If the resulting YST is illegal, then remove enough boxes in order to get a legal 

(iii) This is done by taking care to remove each set of symmetrised covariant boxes 
together with the corresponding antisymmetrised contravariant boxes, and vice versa, 
as shown in the first example of appendix 2. 

In particular, (iii), together with (ii), explain quickly why we need to remove four 
or nine pairs of boxes, respectively, in the previous example. 

Using the Littlewood-Richardson rule, it is easy to verify, if we really have the 
expected Zo(A) in V,,(A)OAkG-I , where k is the number of pairs of boxes removed 
from the YST of V(A)MR. 

The first YST describes by definition an IR if and only if the algorithm does not 
produce an invariant subspace. 

When many non-typicality conditions overlap as in example 2, the irreducible 
invariant subspace characterised by a YST involving a determined number of crossed 

YST. 
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Example 3. Let V M R  have a Y S T O ~  

boxes cannot be factorised from V( A ) M R  without all the irreducible invariant subspaces 
characterised by YST involving a larger number of boxes. When the non-typicality 
conditions do  not overlap, as in the following example, the irreducible invariant 
subspaces may be factorised independently. 

. . .  
* I *  I ' ' ( b , = K 3  and 

U 

bl + 1 = K2 + 2). Therefore, the two invariant subspaces characterised by ( A  + p, a z )  and 
(A + p, a ,  + a2+ a 3 )  do not overlap and we have V(A)MR = V 2 3  VI @ V,, where the 

irreducible invariant subspaces are V2 = V(A - (Y2)IR, characterised by I F ' ,  
lzl 

i.e. x R ,  and V3 = V(A - a ,  - a2 - CY,) , , ,  characterised by 

U 

The possible indecomposable representations are then 

V(A),,= V 2 3  Vi@ V, V ( A ) ' =  VI @ V, 

V(A)" = VI @ V, V( A)"' = VI = V( A)  I R .  

If V( A)'  may also be described by a simple YST, namely Bp] , this is not the 

case for V(A)" and V(A)"'. Specific YST able to characterise these kinds of n o n - M R  
are defined in § 6 .  

(i i)  osp(2/ N ) .  Let the non-typicality condition J1 - b, = b,  - bN+, - ,  + N - j .  Then 
we have to contract one box of the Kist row with one of the b,th row, when 2 s  js N. 
When j = 1, we have to contract one box of the 6,st row with one of the b,th row, 
plus two boxes of the 6,st row with two others of the blst row. 

When some b, = b,+, , there can be problems that we can master with the second 
method as in appendix 2. 

( i i i )  osp( M /  N ) ,  M 5 3 .  The third method is easily adapted for these type-2 LSA. 
When we have 6, - ( N  - i) = c, - ( M  - 1 - j )  then we have to contract a 'sp( N ) '  

box in the b,th row and a ' s o ( M ) '  one in the c,th column. For example, the YST 

corresponding to 

\ 16 6 /  \ I 20 I 

, the M R  is made of FF 
U 

OSp(6/4)  

+ !) 
50 6 64 ' J  \ I U  
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+ ( 1  817 175 + P I5 + PI. 20 

The non-typicality 

Z(A) specified by 

condition 6 ,  - (4- 1) = c, - (6 - 1 - 1) can be written 
n 

n 1 = 4 is made of 

V ( A ) M R =  V ( A ) I R @  1, the singlet would have been obtained by contraction of the 
V(A)MR indices, both of the 'sp( N ) '  type. It is a n  irrelevant possibility according to 
the third method. Thus ?(A) = V ( A ) i R @ l  implies V ( A ) M R =  V(A)IR in this case. 

5. Pseudo-highest weight representations 

The pseudo-highest-weight (or generalised highest weight) representations d o  appear 
necesary when studying the unitarisable (infinite) integral representations of the non- 
compact semisimple Lie algebra. 

Let G = K + N be a simple real LA, where K is its maximal compact Lie subalgebra. 
I fAk ,  A, denote the set of compact (non-compact roots respectively) we define d = Ak U 

( -A") .  
Let p denote a highest weight relative to d, i.e. E + a [ p )  = 0 V a  E d. According to 

Williams (1982), Parthasarathy has given a necessary and sufficient condition on p for 
the unitarisability of V(d ,  p )  when p is regular, i.e. ( p + p P k - p n ,  a )  ZO V a ,  where 
pk ,  p,, = fXa, a E A: (respectively A i ) :  

2(p, a ) / ( a ,  a) E Z + w  {O}, Z, V a  E Ak ( A ,  respectively). (5.1) 
In the language of superalgebras, such representations would be called typical. 

Williams (1982) has corroborated the validity of (5.1) in the su(2 ,2)  non-regular case. 
Note that A and d are related by Weyl reflections. This therefore leads to the 

following general definition. 
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Definition. A pseudo-highest weight p is such a weight that a representation is charac- 
terised by a vector Ip)  satisfying E + , ( F ) =  0 V a  E b, where the system of pseudo-roots 

is obtained from A by a particular succession, W, of Weyl reflections: b= W(A). 

Significant examples were the representations with lowest weight (LW): b’ = 
- A + ( = A - ) .  When there are many Weyl-inequivalent systems of simple roots, say 
A ( i ) ,  then there are no Weyl reflections W such that Aci l=  -W(A(,i). Therefore, for each 
A ( i , ,  there exist corresponding systems of pseudo-roots: A , , i  ZE W(A(, i ) .  

i # 1, will also be 
considered ‘pseudo-positive’ roots (or positive roots with respect to A ( , ) ) .  

By extension, if we call A t , ,  ‘the’ positive roots, then the 

Definition. V ( b ,  p )  denotes a representation characterised by a pseudo-highest weight 
p, i.e. a weight which is highest with respect to the pseudo-simple root corresponding 
to a particular choice of b. 

In the finite-dimensional case, the property of complete reducibility of the semisimple 
LA guarantees the existence of isomorphism between finite V ( A ;  A )  and V ( b ;  p ) ,  as 
in the following example: 

(A,=) = 3* = (A, G) when b = -A 

since it is well known that for a simple LA the lowest weight of V ( A )  is minus the 
highest weight of V ( A ) * :  

V ( b ,  A )  V ( - b ,  -A*).  (5 .2 )  

For the type-2 LSA case the isomorphism (5.2) remains true for the IR,  but for the 
type-1 LSA, (5.2) has to be changed. For example, in the typical case 

V ( b , A ) -  V ( - & ( & - L ) p , - A * )  N = d i m  G-,. ( 5 . 3 )  

But (5.2) or (5.3), according to the LSA type, is not valid for the MR. For example, 

consider the LW-MR 
0 - I  0 

whose decomposition into su(3)+u( l )  I R  is 

~ T O { ~ ~ + G + ~ + [ G + I ~ G + ~ ~ + [ G + I ~ G + I ~ G + I I }  
= 3T@{lO+3f +32 + 1,) = 3: + (6* + 3 ) , +  ( 8  + 1)3+ 32. 

Ir)= b:lp)  is characterised by the pseudo-Hw r of the 6*,  but since a ,  =0, any 
E-,lr)=O, V a  EL, then r is also the pseudo-Hw of the ideal b $ + 8 , + 3 , .  Hence, in 
spite of their identical weights 

where 

2 0  

( A , W ) , , = A =  (A,- 
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and 

0 -! 

Furthermore, it is (d, which is the SSR conjugate to 

In fact, as for LA, it is clear that for type-I LSA the conjugate of any PHW-SRR is a 
PLW one (pseudo-lowest one): 

V(A, A*) V(-A, -A) .  (5.4) 

According to the above example, it is not hard to convince oneself that any PHW 

representation of su(1/3) is isomorphic to a HW or LW one, since all the SRR built in 
the manner indicated in this paper have at most one invariant subspace. This is also 
the case for any of the LSA whose ( P ) H W  representations can never have more than 
one invariant subspace (i.e. when the grey node is at  an  extremity of a Dynkin diagram: 
s u ( l / n ) ,  C ( n ) ,  B(1, n), B ( m ,  I ) ,  D(m,  I ) ,  D(2 ,1 ,  a ) ,  F(4), G(3)) .  

The SRR of the other LSA may have three or more irreducible subspaces. As we 
have seen in the former example, the choice of the positive roots implies which 
irreducible subspace is the factor space and which one is the invariant subspace. The 
generalisation is now obvious: indeed, if a multi-non-typical representation V( A; A )  
is isomorphic to V, CE V, CE V3, say, then clearly there exists a weight p such that 
V(-A; p )  is isomorphic to V,%, V 2 3  V3, but in addition there are certainly choices of 
positive roots A i ,  different from both A and -A ,  and different weights T i ,  such that 
the corresponding PHW representations V(Ai;  ri)  are isomorphic to V, 3 V,CE V3, or 
to VI CE V, 33 V,, or possibly to other combinations such as V, CE V, CE V,. 

The YST for the su(m/n) -Lw representations may be chosen as 

More generally, the (P)LW-YST of any LSA can be defined so that they look like those 
of the (P)HW-YST, reflected on a horizontal axis. 

An example of a PHW representation which is not a H W  or LW representation can 
be found for G = osp(2m/2n) where GO = so(2m) +sp (2n)  and  Gr = (2m, 2n)  as a G 
I R .  By simply considering its two inequivalent systems of simple roots 

D(m,n) w... . . .< 
L d 

n - 
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\ 

J 

and 

C(m, n )  ?.*. -o-@-o- * .  .* 
* ';I 
m 

it is clear that the positive roots of 6+, , say, in the D( m, n )  system of simple roots 
do coincide neither with G,, nor with G - ,  . 

More precisely we have 

s p ( 2 n  J 

G,, = (2m, n )  
G-,  = (2m, i i )  I suppression of the grey node of the D(m, n )  Dynkin diagram. 

e,, = (m, 2n) 

according to the so(m) + s u ( n )  subalgebra of Go that we get by 

according to the su(m) +sp(2n) subalgebra of Gs that we get by - 
G-, = ( f i ,  2n) I suppression of the grey node of the C(m,  n )  Dynkin diagram. 

Then a HW-SRR according to C(m, n) is a P H W  one according to D(m,  n). 
It is clear that the YST of a C(m, n) representation characterised by 

i.e. 

i;-... <-I; 

d 

can be defined as 

m + n  
d=am- ,+2a , -2  a, 

1 = m + l  

so(2m) I b;, = d 
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. . .  

Remark. As for the type-1 LSA, only the I R  can be defined in any system of simple 
roots. This is particularly true for the adjoint: 

. . .  

6. Unequivocal characterisation of indecomposable representations by means of YST 

In the previous sections, crossed boxes 
Firstly, to indicate in which manner we have to ‘contract the indices’ represented 

by means of Y(S)T in order to single out the invariant subspaces. But in fact, in spite 
of a legitimate impression, these YWT were not used as a notation for the representations 
themselves but, on the contrary, were used only as a notation for their respective HW. 

Secondly, to ‘follow’ the action on some weights, described succintly by means of 
YT, when the odd generators are successively applied to \A) .  

Hence, until now, the crossed Y(S)T were indirectly used to describe some I R  for 
LA and supposed to describe the M R  for the the LSA. Now we want to describe the 
whole representation by means of YST. Therefore precautions are needed since there 
are inequivalent representations having the same HW (or PHW). This is the reason why 
we introduce a more complete notation than before for the YST. 

were used in two different ways. 

6.1, Dejinitive notations for the YST 

( a )  Let a YST be defined as in 0 3, i.e. it presumably describes a MR.  If a non- 
typicality condition involves the ith row and j th  row in the type-1 case (or j th column 
in the type-2 case), then this condition has to be indicated by a slash ( / )  in the first 

2 1 - 4 0  

M R  
box of these rows (or columns), e.g. X 

b, + (3 - 1) = 6 ,  + (2  - l ) ,  but not , in spite of the fact that, according 

to the previous notations, Z(A) is characterised by the following highest weight: 

( 6 )  If many non-typicality conditions are simultaneously satisfied, then we apply 
the notation for each condition: 

. . .  I A  =mp 0 0 0 0 0 0 0  
- 

M R  

as b, + (3  - i )  = b; + ( 5  - j )  when j = i+2 ,  i = 1,2,3.  We already know that this MR 

consists of four ‘nested’ spaces (in the semidirect sum sense): V,  CE ( V2 E ( V, VJ), 
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where 
0 0 0 0 0 0 0  

= 1 of su(3/5) VI = CAAAAAT\ I R  

0 1 0 1 0 0 0  

IR v2 =) X 

v3 =I X 

V4 =< X 

2 0 0 0 2 0 0  

IR 

0 0 0 0 0 3 0  

IR‘  

(c )  If we are interested in a non-maximal representation, say V(A)MR/Za(A),  where 
Z,(A) is the ideal specified by the non-typicality condition ( A +  p, a )  = 0, then we put 
a cross ( x )  instead of the slash ( / )  in the boxes involved with this non-typicality 
condition: 

= VI e v, v, when a = ~ I + c Y ~ + c Y ~ + c Y ~ + ~ ~  

wg = v,g v, 

= VI 

when C Y = C Y ~ + C ~ ~ + C Y ~  

when a = a 3 .  

( d )  In general, the N invariant subspaces, appearing when the highest weight is 
N times non-typical, are not all ‘nested’, as is shown in § 4. Let 

@ v2 

@ v3 
be made of VI 

So then 

v = v,. 
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Remark 1 .  In contrast to the previous YST notations, these new ones allow us to 
describe unequivocally all the H W  representations. But, as in the Lie algebra case, a 
given representation can still have many equivalent YST. For example, for su(2/3): 

Remark 2. The same is true for the LW representations. For example 

0 - 1  0 

I R ,  A = IR 

0 -2  0 

I R  @ * 
Remark 3. A su (m/n ) -YsT  with b,  = 6,, = O  (then a,,, =0) is obviously non-typical. 
We cannot however indicate it with a slash due to the lack of boxes in the last line. 
For this reason we cannot 'extract' the expected I('\), implying the impossibility of 
this YST describing the M R .  In general, such YST describe another SRR,  or sometimes 

an :R, for example . . .a,, for 

s u ( m / n ) ,  m f n. (When m = n the YST of the adjoint is L/vI.) The same is true for 
the osp(2/ N )  class of LSA, for example: 

0 0 0  
= &&.. . 

3 2 1 0  - - 
IR 

U 

Remark 4. For the osp( M /  N ) ,  M 5 3, slashes and/or crosses may be written only 
when one box is in the sp( N )  part and the other one in the so( M )  part of the YST, 
giving for example: 
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6.2. Equivalence of YST 

Two problems arise. 
( a )  The equivalence between two ‘HW representations’-YsT (or between two ‘PHW’- 

( b )  The equivalence between an ‘HW’-YT and ‘PHW’-YST or more generally between 
YST). 

two different kinds of ‘PHW’-YST. 

( i )  su(m/n)  
( a )  Given a MR-YST, we already know that adding K columns of m undotted boxes 

and K columns of n dotted boxes leads to an equivalent YST. 
If it describes a non-maximal representation we can also add N columns of dotted 

and undotted boxes, but if the starting YST do not possess crossed boxes, as in the 
second example of remark 1, we then have to put the crosses needed. 

( b )  We know that in principle only the I R  can be described both as HW and LW 

representations. Even in that case, the following su( 1/3) example: 

but 

shows that the relationship between upper contravariant and lower covariant indices 
and vice versa is not direct. 

(ii) sp(2/N).  
( a )  For the MR, the columns of X undotted boxes, if X # N, are equivalent to 

columns of N - X boxes, as for sp( N ) ,  but in contrast for the sp( N )  case, if X = N, 
this is the combination of a column of one dotted box plus a column of N undotted 
boxes which is equivalent to a zero box. 

( b )  Same comment as for su( m/ n). 
(iii) O S ~ ( M / N ) - Y S T ,  M #2.  
( a )  In contrast to the type-1 LSA, two different ‘HW’-YST (both made of undotted 

boxes) describe necessarily two inequivalent representations, since they cannot describe 
the same highest weight. The same is true for two ‘PHW’-YST, both made of dotted boxes. 

( b )  For a given I R ,  there is necessarily equivalence between the ‘HW’-YST and the 
‘PHW’-YST. When few boxes are involved. we have 

For a more complete discussion of ( a ) ,  see Deluc and Gourdin (1984). 
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(1’) sdim( v) =dim [ 
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f 

7. YST, superdimension, index, etc 

7.1. Superdimension of the su(m/n)-IR 

A way to compute the dimension of a su(n)-IR is the ‘product of the boxes over the 
product of hooks’ rule familiar to physicists. 

The question is: is there a corresponding rule in the su( m /  n )  case? 
Let D = dim 0 = m + n and d = sdim 0 = m - n, then obviously d i m a  = D and 

sdim m= -d,  and it is easy to compute the following results if m > n :  

(i) dim m = dim H= f(D2+ d )  s d i m m  = sdim = f d ( d  + 1 )  H ~ 

(i i)  dim = dim 1.1.1 = f (D2-  d )  s d i m s  = sdim 1.1.1 = fd ( d  - 1) (7.1) 

(iii) dim = D2 - 1 s d i m m  = d 2 -  1. 

Therefore, superficially, there is no ‘hooks rule’ for the dimension, but as we shall see, 
a very similar rule indeed exists for the superdimension. For example, we can verify 
on many examples that, if m > n, then 

(1) sdim( p) =dim (p) 
su(m/n) su(m-n) 

= dim 

When m < n, rules (1)  and (2) are now simply changed in 

au(m - n)  

ru(m - n)  
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- 

In fact, the flip in (2)  or (1') is artificial because of having d < 0 or - d < 0: the value 
of the 'product of the boxes' gives, for example, the equality 

( - d )  - k U 
leading to an unified superdimension formula, V s u ( m / n )  m # n :  

( I )  sdim 

r- 
= dim i \ u ( m / n l  

A- 

= dim 

d - 2 '  I 

d = m - n  

I ~ = n - m  

where d and 6 are the numbers that have to figure in the product of the boxes. 
The superdimension of the mixed YST can be computed with the aid of the third 

method: V(A)rR has the same superdimension up to a sign as its maximal ideal I ( A )  
specified by the following HW, say 4, but this [ (A)  may also be seen as the factor 
space V(4),R of V ( 4 ) M R ,  then sdim V(h),,=sdim V ( C $ ) , ~ .  
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This procedure can be repeated until we finally obtain sdim V ( A ) i R  = sdim v ( r ) , R  

where the YST of v ( r ) l R  is made only of dotted or undotted boxes. Thus ( I )  or (11) 
can finally be used to compute the superdimension, giving a chain of equalities: 

(111) sdim(mixed Y S T ) ~ ~ ( , , , , , , ~  = sdim(mixed Y S T ‘ ) ~ ~ ( , , , / , , ~  

= . . . = sdim(unmixed Ysr”“),uim,nl 

= dim(yrff”)sui,,,-,,). 

a , = a 2 + 1  and a , = a 2 + a 3 + 2 .  
For example, we will consider again su( 1/3) and its non-typicality conditions a ,  = 0, 

( i )  a ,  =0:  

/ I  I \  

( i i )  a ,  = a 2 +  1: 

= a , + a , + 2 .  

( i i i )  a ,  = a 2 + a 3 + 2 :  

i sdim 

a> + 2 
= sdim 

~ u ( I / 3 1  

= sdim 

= a i +  a i + 2  = a2+ 1. 

These formulae for su( 1/3) coincide with the ones given in Thierry-Mieg (1984). 
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7.2. Superdimension for the other LSA 

More generally, every superdimension formula for a given LSA can be expressed by a 
dimension formula for the related LA that we can find in the column ‘sdim’ in table 
A4 (for s u ( n / n + l ) = s u ( n + I / n )  and osp(2n+1/2n) ,  the related LA is simply ~ ( 1 ) ) .  

For example, consider the following F(4)  tensor product (see 0 9):  

40(8)040(8) = 296(8)0756(20)0507(27)040(8)0 1. 

The associated LA is su(3) where 8 0 8  = 2 7 0  1 0 0  10*@8@8@ 1. Thus 

s d i m F 1  F14) =dim I] + Fl = 2 0 = 2 d i m m s u ( , , .  
S U ( 3  I 

Proof: For the infinite series of basic LSA, it was proven in Bars (1985) that the 
supercharacters ~ ( u )  of the I R  of these LSA are equal to the characters ~ ( u ‘ )  of an  I R  

of the related LA, but X( 1) gives the superdimension exactly. In particular, the formula- 
tion of (I)  and  (11) for su (m/n )  was proved in this way. Similarly, it was proved that 
the superdimension of an  O S P ( M / N ) - I R  whose YST is made only of ‘ s p ( N )  boxes’ is 
equal to the dimension of a s o ( N -  M)-IR whose YT looks like the previous YST (see 
table A4 for the meaning of so( N - M ) ,  when N - M < 0). 

Now, by using the third method, the superdimension of the other non-typical I R  
(whose YST have both boxes of the ‘sp(N)’ and ‘ so(M)’  type) can also be found. 

The proof for the exceptional LSA comes from Thierry-Mieg (1983a) where the 
following formula appeared (in an equivalent formulation): 

sdim V(A)G = k .  dim V(A’)H (7.5) 

where k = 1 when G = su( l / n )  or osp(2 /N) ,  and  where k = 1 or 2 when G is osp(M/2) ,  
D(2 ,  1, a), G(3)  or F(4), and where the formula dim V(A’)H is given by 

dim ~ ( A ’ ) H  = n ( A + & ,  a ) / ( & ,  a) 
L?€A, 

where As represents the following set of roots: As = { a  # pl(a, p )  = 0 where p E A ,  and 
( > I + p ,  p )  = O}, which is the root system of the related LA in that case. 

Conjecture. The formula 

sdim V(A)G = k sdim V(A’)H (7.5’) 

which coincides with (7.5) for the above-mentioned LSA G is valid for any faithful 
V(A),,  of any basic LSA. The root system A x  of H, being specified exactly as before, 
is now in general the root system of a LSA. 

sdim V(A)G = k‘ k“ - . . , k”” * dim V(i~’’’’)related LA.  

By successive applications of the formula (7.5’), we should finally find - 
k 
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7.3. Index of a representation 

The kinematic term of a LSA valued field 
dim G 

@ ( x ) =  c @ ( X ) ' T ,  
I = 1  

where T, = T(  e , )  are the generators of a given representation V ( A ) ,  e, E G, has to be 
a symmetric bilinear invariant term. Thus it should be written a STr d , @ ( x ) d p @ ( x ) ,  
as the supertrace form is symmetric, bilinear and invariant. Two such forms are 
proportional for the basic LSA and this undetermined factor of proportionality is usually 
called the coupling constant (Schucker 1982). 

However, contrary to the classical LA case where STr coincides with Tr, the trace 
form, the supertrace form may be degenerate. In that case, the index 1, of the 
representation V, defined by STr( T,T,) = Iv(e , ,  e,), is obviously vanishing and the 
superfield @ ( x )  cannot propagate by virtue of the lack of a kinetic term and is only 
an auxiliary field of the theory. 

A way to compute it, when sdim G # 0, is by using the following formula (Kac 1977): 

Iv(,,) = sdim V ( A )  C2(A)/sdim G (7.6) 
where C2( A) is the eigenvalue ( A  + 2p, A )  of the Casimir operator. (It can be computed 
with the help of the following formula: (A+2p, A)=Z,AI(A+2p, ai). As for LA we 
have A = A-'a, where a is the highest-weight vector and A-' is the inverse of the 
Cartan matrix. The A-' are computed in Lemire and Patera (1982).) 

The vanishing of the superdimension, and hence of Iv(,,), is easily recognised for 
the atypical s u ( m / n ) - m  with the help of ( I ) ,  (11) and (111) and their analogue in the 
osp( M /  N )  cases. 

In general, for type-1 LSA, if we know the Go content of V ( A )  = v k ,  where, according 
to the 2 gradation of these LSA, v k  is the subspace of V ( A )  characterised by the u(1) 
eigenvalue ( q  - k ) ,  we can quickly evaluate the vanishing of lv, even when sdim G = 0, 
by simply computing 

STr Q 2 = c ( q - k ) 2 ( - l ) k d i m  V, (7.7) 
k 

as STr Q2 = dim GI # 0 for the adjoint representation. 

except when G is isomorphic to su( 1/2) = osp(2/2). 
In particular, (7.7) implies that we also have STr Q 2 = 0  in all the typical cases, 

Roo$ 
STr 0 = (4 - k ) (  dim v k  = 0 

k 

implies the following identity: 

(-l)kk dim v k  = q sdim V ( A )  
k 

which allows the alternative formulation of (7.7): 

STr Q2 = -q2 sdim V ( A ) + C  (-l)kkz dim vk. 
k 

In the typical case, dim v k  = ( f )  dim V,, N =dim G - ,  , but X," ( - l ) k k 2 ( f )  = O  when 
N 5 3. Thus the second term vanishes as well as the first one, since sdim V ( A ) ,  = 0. 
Therefore STr Q2 = 0 in the typical case. 
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When G = su( 1/2), then we find by simple calculation that STr Q2 = 2 dim Vo(A) 
in the typical case. Therefore any faithful I R  of this LSA admits a non-degenerate 
supertrace form since in the non-typical case we have STr Q2 = * n (  n * 1) when 
dim V(A) = 2n f 1. Finally, note that we cannot evaluate 1, in this way in the case of 
su( n /  n )  since STr C2 = c * STr V(A) = 0, V V( A).  

7.4. Self-conjuga ted represen tu tions 

A representation V(A) is self-conjugate if for every weight U belonging to V(A), the 
weight -u also belongs to that V(A).  In that case, a representation of a real Lie 
algebra is either real or quaternionic. 

In particular, a su(n) IR is self-conjugate if the Dynkin indices satisfy ai = a,,-i Vi; 
and similarly a representation of so(4m + ~ ) - I R  is self-conjugate iff an-, = n.  More 
simply, all the I R  of the other Lie algebra are self-conjugate. 

Consequently, for the type-2 LSA, except osp(4m + 2/2n), any representation V(A) 
is self-conjugate. For the osp(4m + 2/2n) = D(2m + 1, n), a representation is self- 

we have to compare u~,,,+,,+~ with the Dynkin index d. 
For the type-1 LSA, a typical representation is self-conjugate if the representation 

of the ground floor is conjugate to the one of the Nth floor ( N  = dim Gi). It is not 
hard to see that none of the typical representations of su(2k + 1/21 + 1) and C( n )  can 
be self-conjugate, since the necessary condition q = N / 2  implies a non-typicality 
condition. 

conjugate iff a2,,,+,,-, - - uZm+,,. Similarly in the C(2m + 1, n )  system of simple roots, 

Proof for su(m/n)=su(2k+l /21+1) :  

' 2 k + 1  ' 2 k i 2 i i l  &&...- X . . .- 

Let V(A)=$Zo  Vi be a typical I R  where the Vi are the subspaces of V(A) 
characterised by the Q eigenvalue q - i; thus 

and 

where 

2 k  21 1 
q = G ( n  c i . a , + m n * a 2 k + l - m  1 j .bzr+l-J  

, = I  ] = I  

Now V(A) is self-conjugate iff 

at  = a2k+l - t  

(7.8) 

(7.9) 
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q ’ =  - q  i.e. q = Imn. 

By introducing (7.9) and (7.10) in (7.8) we get 

I 

q=E( i = k + l  2 ~ ~ + a ~ k + ~ -  j =  1 bj) 

5795 

(7.10) 

(7.11) 

(7.12) 

which, together with (7.11), gives 

but in contradiction to this hypothesis, this is precisely the non-typicality condition 

The proof for osp(2/2n) is similar. 
In the non-typical case, by using the third method, it is easy to verify if an invariant 

, whose YST subspace can be self-conjugate. As an example, consider 

is . Thus at the ground floor we have V,(A) = 3+2 of su(3)+ u( l ) ,  whence at 

the third floor we have a 3-1. The YST of this V ( A ) M R  clearly shows that a I (A)  is 

2 1  0 

M R  

self-conjugate since the ground floor of I ( A )  is in a 3f1  of su(3)+u(l) .  

8. Tensor products 

This section is just an overview of the difficulties (Rittenberg et a1 1977) that appear 
for finding the tensor product rules in the su( m/  n )  case. The difficulties are certainly 
more important for the other LSA. 

The YST that appear when the reductions of the tensor products are made will then 
be called ‘tensor’-YsT (T-YST), as opposed to the ‘(P)Hw’-YST already defined in this 
paper. If we identify the T-YST with the HW-YST for the fundamental IRC) and similarly 
with the conjugate fundamental o n e m ,  then any su(m/n)  HW-YST is at the same time 
a consistent T-YST. The converse is not always true, but in that case the link between 
the two notations is in fact very simple, as we shall see. 

8.1. Tensor product of su(m/n)  non-typical I R  

When making the reduction of the tensor product of two non-typical YST both made 
of undotted boxes, we simply have to follow the same rules as the ones for su(N), 
N >  total number of boxes considered (Bars et a1 1983, Dondi and Jarvis 1981, King 
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1982). The resulting T-YST that have 
preted as HW-YST, according to 

columns with more than m boxes can be reinter- 

r I 1 

This observation is obtained from the supersymmetrisation rule (Bars et a1 1983) 
that allows us to find Vo(A). Hence the HW-YST: 

with q = [(n - m ) - ' ( n  j ) ]  - k, where j is the total number of boxes and k is the number 
of boxes under the mth line. 

The crosses and slashes must not be forgotten, as in the following example crosses 
must be added: 

for 4 2 / 3 1  as Vo = 

Similarly, when making the reduction of the tensor product of two non-typical YST 

both made only of dotted boxes, the YST that have columns with more than n boxes 
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have to be changed according to the following rule: 

being 

5797 

specified this time according to 

-I\ 

specified this time according to Y:-[q, 
U 

with q = [ (n  - m)- ' ( -m j ) ]  - k where j is the total number of dotted boxes and k is 
the number of boxes under the nth row. 

When an arbitrary mixed T-YST is considered, the corresponding HW-YST is found 
by gluing together the identical columns obtained by applying (8.1) for the undotted 
part of the T-YST and (8.2) for the dotted part, respectively. 

A T-YST is illegal if the corresponding HW-YST is ill-defined. It should simply be 
eliminated when it appears in the reduction of the tensor products. For example, 
consider the following two su( 1/3) tensor products: 
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Thus, by a simple dimensional argument, the T-YST 

representation, which is fortunate since it is illegal. 

cannot describe any 

Remark. The only differences with Bars et a1 (1983) are that the dotted part of the 
YST has to be transposed, and crosses and slashes should be added in order to have 
a well defined non-typical HW-YST. Note that if the first difference may reflect different 
attitudes in regard to the apparent symmetry-antisymmetry flip discussed in the former 
section; the / in or boxes of the above-mentioned reference have nothing to do 
with the invariant subspaces; they simply denote the 'super' indices. 

The difficulties really appear when the tensor products are made with both dotted and 
undotted boxes. By simply making the tensor product @ we see that dotted 
and undotted boxes are on an equal footing and we have to interpretthe T-YST according 
to 

and 

When the tensor product of an arbitrary YST is made with a second one made of 
only one box, it seems, as is shown in appendix 3 for su(1/3), that the reduction 
follows the following simple rules: 

( i )  add the box of the second YST to the first one in all possible ways, 
( i i )  simplify the resulting YST with the help of (8.3), 
(i i i)  keep one copy among all the equivalent YST, two YST being equivalent by 

permutation of a column of any number of dotted boxes with another one made of 

undotted boxes. From that point of view, plays a role similar to n - 1  in su(n). 11 
However, this quite simple rule is already hard to generalise when the second YST 

is made of two boxes. For example, for su(1/3) we have 

m U1 
but the expected do not appear. Therefore R is not the full analogue of H I n - 2  

U U 
and we need a point (iv) explaining that fact. HJ 
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Unfortunately these four points are far from being sufficient. For example, 

p m =  FA@ M R  (3 ~ H W C M R )  0 1  (8 .5 )  
A 

7 ( 1 )  7(1)*  W O )  T - M R  

24(0)*  

where QR denotes a representation having the same weights as the maximal SRR one, 
as we can check by weight techniques or dimensional arguments. However the 
algorithm does not specify if we have a direct or semidirect sum of non-typical 
IR. Thus we need a point (v) that will save us from computing explicitly the 

Bj. Clebsch-Gordan coefficient, and a point (vi) for explaining what is the 1 

8.2. Another partial algorithm 

The tensor product of the non-typical I R  of su( l / Z ) :  

and 

r 
k t l  
@-& 

L '1 

is unambiguously found using weight techniques. Indeed, in any case, only one 
non-typical I R  appears (with many typical I R ) .  Thus only the direct summand of I R  
is possible when the reduction is made. 

According to the algorithm of § 8.1, we find 

(8.7) 
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in agreement with the weight techniques, as is proved by the matching of the dimensions. 
But, as we have seen, the rules for the making of 

r . ’“i - 
J 

are not well defined. 
In contrast, by now using the HW-YST, the correct answer is easily written whenj s k 
Let a @ then, if j s  k, k + l  k 

1 -- I@[ - 
J k k +  1 

Therefore, apparently, when the tensor product with HW-YST is made we have ( a )  to 
combine undotted boxes as for su( m) and dotted boxes as for su( n ) ,  but ( b )  we do 
not have to combine dotted boxes of the first YST with the undotted boxes of the 
second YST and vice versa. Furthermore (c )  in contrast to the T-YST algorithm, we 
have to discard the YST that appear with a column having more than m undotted boxes 
or more than n dotted boxes. 

According to this HW-YST algorithm, we get the correct result for (8.4): 

But unfortunately, due to point (c ) ,  this algorithm is still incomplete for (8.5) 

This algorithm also fails for ’a 
Q , j 3 k, since we have to add - - -  

now I I to the result obtained 
\ - # 

j + k + l  i + k + ?  

according to the HW-YST algorithm: 

(8.6’) 
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and similarly for (8.8) when j >  k since the correct result necessitates adding - 
j i i + l  

to 

i 
t = O  

5801 

(8.8') 

Therefore the only reasonable conclusion is to say that the problem of the reduction 
of the tensor products is far from being resolved, especially because of the absence of 
a method able to determine quickly for which type of summand the non-typical 
irreducible subspaces appear. 

In Marcu (1980b), the reduction of some tensor products of su(2/1) (=su(1/2)) 
representations have been extensively studied. The reader can easily translate the 
non-degenerate tensor product into the YST language, knowing that the convention for 
the u(1) eigenvalue is half of that used in the present paper and that we have the 
following correspondences. 

(i) I R  
2 q - 1  -2q 

[ q l + =  o-.@ [ q l - = & - &  q=fz+ 

This paper also provides important examples of SRR that appear in degenerate tensor 
products and which are not ( P ) H W - S R R .  These SRR,  made of three or four irreducible 
subspaces, are explicitly realised in a related paper (Marcu 1980a), for example 

[q- '  21 4 +I 2 , 4 1 *  = 19 -+I* 3 [91* G [ q  +;I* 

[ q ,  q - 4 ,  q +$I* = [ q  -+I* @[41* 3[q +t l*  
[ q ,  q f 1, q * f , q * $ I *  = [q1+ 3 [ q  * f l +  G [ q  * 1 I +  8 [ q  + fl+ 

[ q , q - - f , q + f , q l * = [ 9 1 -  [ql-  
9 [s-tl+ @ 

?3 [ q + f ] +  c% 
etc. 

Since any su(2/1) (P)HW-SRR is made, at the most, of the direct summand of two 
I R ,  we believe these strange SRR to be examples of representations built by induction 
on a finite-dimensional indecomposable representation of the non-semisimple sub- 
superalgebra P = Go+ G+l of G = su(2/1). In the above-mentioned reference. Marcu 
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also obtained representations with non-diagonal Cartan subalgebra, probably of the 
type Ind$;) cp where cp is a non-trivial U (  1) module. 

In the general case, many S R R  which are not (P)HW-SRR can be realised in these 
ways, as any LSA can be chosen in place of G = su(2/ 1) .  

8.3. Tensor product with a typical I R  

As soon as we have consistent rules for the tensor product of irreducible non-typical 
IR, it is quite easy to find the weights that appear when tensor products are made of 
typical representations. Indeed, when the value of the Dynkin index a, is changed, 
we simply shift uniformly the U(  1 )  eigenvalues. In particular, when the new a, coincide 
with a non-typical value, the shifted weights belong to (direct and/or semidirect) sums 
of non-typical IR .  We can then apply the above, presumably consistent, rules for the 
tensor product. The inverse shift on all the weights that have appeared remains to be 
made as well as their final regrouping into I R .  

It does not solve, however, the problem of knowing which kind of summand we 
have to take for the non-typical IR .  

The presence of semidirect summands when some tensor products of typical I R  are 
made may look strange, but can be easily understood. Indeed, since the following 
isomorphism holds: 

when there are only typical I R  in V ,  it is natural to suppose that (8.9) still holds when 
non-typical representations also appear in V. But by choosing some specific value for 
j ,  this V can arise either from the tensor product of non-typical S R R  (and in that case, 
it is easily conceivable that some SRR are present in V )  or simply from the tensor 
product of typical I R .  

8.4. r-ysr for the other basic LSA 

As for su(m/n) ,  the ( P ) H W - Y S T  defined in the previous subsections for the type-2 LSA 

apply equally well as T-YST. In contrast, the HW-YST of the osp(2/2n) do not give 
well defined YST. For example, U,, does not describe the fundamental I R  

. . .-&&, but in contrast the non-typical I R  
1 0 0 

0 1 0  

-, X 

The T-YST of C(n -t 1)  =osp(2/2n)  = C(1, n )  can be defined by analogy with those 
of the other osp(2m/2n) = C ( m ,  n). When the value of h ,  is sufficiently high, we can 
define 

. . &&, and aHw describes a 22"-dimensional typical I R .  

a .  - - I  

(8. 10) 
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if we admit that this YST implies Vo(A) = 
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is by definition the total number of boxes minus the number of boxes under the first row. 
When a ,  is too small, a possible definition is 

k a )  - J  k 

(8.11) 

Vo(A) being defined as before with q the total number of undotted boxes, minus the 
number of dotted boxes, minus the number of boxes under the first row. 

Now 0, describes the fundamental IR,  but mT is still used to describe the above 
22"-dimensional I R .  Since we have that dim 0, #dim UT and that 0, is self- 
conjugate, the suppression of the dots in (8.14), as well as in Morel et a1 (1985) is 
probably justified. 

On these T-YST, the non-typicality condition a,  - Z;JI,2 (a,  + 1) = 0 is equivalent to 

(8.12) bl - 6, = C, + ( j - 1) 

and should be noted as for the type-2 LSA in order to find the invariant subspaces. 
Contrary to the HW-YST case, the other non-typicality conditions, such as some of 

the ones of F(4)  and G(3) as we shall see, are hard to write for the T-YST. However, 
for osp(2/2n), we can still find the invariant subspaces relatively easily without using 
the HW-YST knowing that 

( i )  V ( A , A ) , , = I ( - A , p )  where p = 2 ( q / 2 n - l ) p I - A * ,  
( i i )  if A implies that 

then the Dynkin indices ai of Z(-A, p )  satisfy a: -Zj=2  ( a : +  1) = 0. Thus we can use 
(8.14), adapted for the LW-T-YST: 

(8.13) 
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9. YST for the exceptional LSA 

In contrast to the infinite series of basic LSA, 0 ( 2 , 1 , 2 )  and 0 ( 2 , 1 , 3 )  excepted, the 
adjoint is always the smallest representation of the exceptional LSA. Consequently, 
there is no convenient way to have YST with only one box: for example, if we had 
denoted by 0 the adjoint 40(8) of F(4)  (the number in brackets denotes the 

superdimension) then m (0 &I 0) should have denoted the completely 

should have denoted the completely reducible 756(20)040(8).  But it is hard to see 
the 507 and the 756 resulting from some kind of contractions on the indices. In fact, 
this last remark indicates clearly that we should seek true T-YST which could be at the 
same time well-behaved HW-YST, like the ones of the osp( M / N ) ,  M # 2 .  

reducible representation 296(8 )0507(27)0  1, and similarly = (U 6 O> 

The above-mentioned problem disappears if we assign to the 40( 8 )  the following 
YST: m. Then 

The price of this is that the consistency conditions cannot be ‘understood’, as for 
the type-2 o s p ( M / N ) ,  by simply seeing the YST. If, as we shall see, the notations for 
some of the non-typicality conditions remain quite similar to the osp(M/ N ) ,  M # 2 ,  
case, the other non-typicality conditions do not have clear interpretations. This strongly 
suggests that the following YST of the exceptional LSA are the analogues of the C ( n )  
T-YST, but not of the (P)HW-YST. 

( a ) D ( 2 , 1 , a )  

Consulting table A12, it is clear that non-typical representations exist only for rational 
values of a, which may be chosen to be larger or equal to 1, according to table A2. 

In fact, due to the infinite possible values of a, we will not discuss the invariant 
subspaces which depend crucially on this parameter a. For example, the dimension 
of the smallest representation is 6, 10, 14 for a = 1,2,3,  respectively, and 17 for the 
other values of a (Thierry-Mieg 1983b). We will simply admit that a YST has one of 
the following shapes: 
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when V,(A) is 

t or 1 .  

) of su(2)+so(4), and where + eventually denotes*, 
b 

The proof that D(2,  1 , l )  alone has a fundamental representation (six dimensional) 
is quite simple: the Cartan matrix of D ( 2 ,  1, a )  is 

Thus [E,,, E,,] = 0. When b = 1, then we must have for consistency that 

E - ~ ~ , + m ~ ~ E - a , I A )  0 E - , , , + a , , E - u , / A ) .  

Thus we should satisfy simultaneously a ,  9 [ a ,  - ( a 2 +  l ) ]  = 0 and a ,  * [ a ,  - a ( a 3 +  111 = 
0; hence a ,  = a?+ 1 = a ( a , +  l) ,  in agreement with table A9. But V(A) can be the 
fundamental I R  only if a2 = a3 = 0; hence we need a = 1. But D(2,  1, 1) = D(2, l )  is 
not an exceptional LSA and is not the subject of this section. 

( b )  ( 3 3 )  

&-6+& 
We simply propose 

Clearly, the consistency conditions corresponding to b = 1 (impossible) and b = 2 
( a z  = 0) obviously have no ‘YST’ interpretation. In contrast, the following non-typical 
YST are denoted in a traditional way: 

when 2 b = c , + 2 c 2 + 6  

when 2b = 2c, + c,+ 7 

b,  = b F 
b ,  = b F 

but the non-typicality condition 2b = c ,  - c2+6  corresponding to ( A +  p ,  a ,  + 3a2+ a3)  = 
0 cannot be specified in such a way. The reason is that ,y = A -  a ,  - 3a2 - a3 cannot be 
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a highest weight of an invariant subspace with respect to su( 2) + G2.  Thus a fortiori it 
cannot be the H W  of a G(3)-invariant subspace. 

( c )  F(4) 

&-&&--6. 
The most difficult YST to find were those of F(4). Firstly, by looking at the su(2)Oso(7) 
content of some V ( A ) I R ,  according to the Thierry-Mieg table of representations (see 
Thierry-Mieg 1983a), it was possible to suspect the existence of spinorial I R  for F(4),  
the spinor or tensor type not being related to the S O ( ~ ) - I R ,  part of the definition of 
Vo(A), but in contrast to the S O ( ~ ) - I R  associated with the singlet ofthe su(2). Supporting 
this idea, the spinorial representations identified in that way are always typical, like 
the osp( M /  N ) .  

Finally, it was possible to define quite well behaved YST to finding the irreducible 
subspaces of the tensor-MR. The spinor-Ys-r are completed with an arrow, as for so( N ) .  

( i )  Tensor-YsT, when b + a2 is even (i.e. when a ,  is an integer, since b = 20, - 3a2 - 
4a3-2a,). More precisely we find, when both b and a2 are even, 

IQ, 

or when both b and a ,  are odd 

a,+ I 

( i i )  Spinor-YsT, when 6 + a ,  is odd (or a ,  a half-integer), b even, a, odd: 
h 
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b odd, 

The non-typicality conditions can be written in the following way: when b is even 
and  a, -2a2 -4a3-3a4-6=0 ,  i.e. 3(b -4) = 2 ( c ,  - c,+ c,+ 1) = 0, then 

C l  c2 =, 
b ,  = b 

F 
when b is even and a,  - 2a, - 4a, - 2a4 - 8 = 0, i.e. 3( b - 4) = 2 (  c, + c2 - c3 + 1) = 0, then 

and when b 
then 

-4a3  - 2a4-9 = 0, i.e. 3 (b  -4 )  = 2 ( c ,  + c2+ c,) -+ 1 = O ,  

As for G(3) the other non-typicality conditions cannot be written in such a way. 
Thus, in contrast to the o s p ( M / N ) ,  M # 2 ,  case (and the su (m/n )  case), it is 

impossible for the exceptional LSA to find T-YST which are, at the same time, completely 
well behaved as ( P ~ H W - Y S T .  The situation is in fact more similar to the osp (2 /N)  case, 
except that now a true definition of ( P I H W - Y S T  is still missing, mainly due to a tack of 
explicit knowledge about the ‘large’ representations. 
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10. Conclusions 

(i) In this paper we have recalled some well known results about the I R  and the 
SRR and we have given many concrete examples and explicit general statements in a 
formulation accessible to the non-specialist; in particular, we have shown how to 
characterise algebraically the possible invariant subspaces of the non-typical rep- 
resentations and we have reinterpreted the so-called consistency conditions as necessary 
non-typicality conditions for obtaining finite-dimensional representations. 

(ii) The algebraic characterisation of atypicality which leads, through the third 
method, to the intuitive 'contraction of the indices' interpretation can be analysed 
more precisely in terms of the basis vectors of the representation when tensor products 
are made. Indeed, some of them become unexpectedly collinear (Marcu 1980b) for a 
given set of Dynkin indices (or the Casimir operator eigenvalues (Rittenberg et a1 
1977, Scheunert 1984)), giving in that way a geometric interpretation of the non- 
typicality. 

(iii) We have presented for the first time, to our knowledge, YST for the exceptional 
LSA. In addition, the formulation of all our su( m/ n) and osp( M/  N)-YST carry more 
information than the previously defined ones, the possibility of defining YST which are 
able to characterise inequivalent representations having the same H W  or PHW being 
throughly verified. In particular, the ( P I H W - Y S T  permit us to find graphically the 
invariant subspaces of the SRR. 

(iv) These (P)HW-YST permit a relatively quick computation of the superdimension 
of the non-typical I R  and can be easily related to T-YST, which have superficially good 
tensorial properties. In fact, the T-YST are almost identical to the YST previously defined 
in other papers. Note that, for C ( n ) ,  the ( P ) H W - Y S T  are the only ones that carry enough 
information to be able to characterise the different representations specified by the 
same highest weight. This will probably also be the case for the exceptional LSA, but 
(P)HW-YST remain to be exhibited for these LSA. 

(v) We have shown that, in the non-typical case, different choices of the simple 
roots, i.e. different choices of positive/negative roots implying corresponding 'gen- 
eralised' notions of highest weight, lead to inequivalent finite S R R  having the same 
weights. Furthermore, we have shown that for the type-1 LSA a given SRR and its 
conjugate cannot both be defined as HW-SRR with respect to the same system of 
(pseudo-)positive roots. 

(vi) The choice of positive/negative roots can be even more decisive in the P (  n )  = 
P ( n ) - , + P ( n ) , +  P(n),, ClassofLsA, where P(n)-,, P(n),and P(n)+, are,respectively, 8.m and m of s u ( n +  1). As a P(n) is a type-1 LSA (its odd part is completely 

reducible), we expect that any of its H W - M R ,  say V( \ ) G R ,  is made as 

N = d i m P ( n ) - , = ; n ( n - l )  ) 
N 

VO(A)O 1 iZkP(n)- l  Lo 
thus implying dim V ( A ) L R  = 2 N  dim Vo(A). In contrast, starting from the same Vo(A), 
a L W - M R  is expected to be 

"=dim P ( n ) + , = f n ( n + l )  
N '  

V,(A)@( k = O  .4kP(n)+l  

thus 

dim V(A)MR=2"dim Vo(A)=2"  dim V ( A ) L R .  
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(vii)  It is interesting to see the great similarity between the 2 grading of the s u ( n / l )  
I O  

representation W .  . .a and thp 2 grading of the Cartan-type LSA W( n) 
and two of its subsuperalgebras: S(n) and f i ( n ) .  

We simply recall that W( n )  =der A( n) where t( n) is the Grassmann superalgebra 
with n basic generators ti ,  i = 1, , . . , n. S( n )  and H( n) are found with the derivations 
D E  W ( n )  that are respectively annihilated by a volume form Y, or a (closed) 
Hamiltonian form A, these forms being defined on a particular superalgebra, O(n), 
built over A ( n )  (Kac 1977): 

S( n) = { D E W( n)/ DV = 0 )  

f i  ( n ) = { D E W( n ) [ DA = 0). 

More precisely we have W(n)=@::l, W ( n ) , ,  S ( n ) = O : Z ! l  S ( n ) ,  and l ? ( n ) =  
0 A( n),, where 

fi( n), = Y) ’ 8 + 2  of so( n). 

Therefore we can regard S(n) and A ( n )  as some irreducible subspaces of the ‘non- 
typical’ W( n ) .  

In fact, this is the inverse approach of the non-typicality, where in order to 
characterise the representations (Farmer and Jarvis 1983) one puts constraints on the 
non-typical superfields on which the generators realised as differential operators act. 
Here, the constraints are put on the differential operators. 
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n + l (  

(v i i i )  In the case of the basic LSA, the YST approach for the superrepresentations 
was fruitful, mainly in its 'notation' interpretation. This may also be true for some 
other simple LSA. For example, Leites and Serganova (1984) proposed the following 
Dynkin diagram for the identification of the Q ( ~ ) - I R :  m., .M 

a, a> a" 

As Q ( ~ I ) ~  su(n  + l ) ,  the representation Vo(,\) is specified by W. . .a. 
If we identify the HW-YST of V(,\)  with the YT of Vo(A), then the YST of any faithful 
representation is made of more than n boxes. Indeed, in the typical case, all the 
Dynkin indices are strictly positive, which implies that the YST are made of more than 
I:=, ( n  - i )  = f ( n +  1 ) n  boxes. In the non-typical case, i.e. when at least one of the 
Dynkin indices vanishes (Kac 1977), the YST is made of a multiple of n + 1 boxes. 
The consistency condition a, = 0, implying a ,  + 2 q f .  . . + ( i  - l ) a , - ]  = 
a, + 2a, - ,  + . . . + ( n  - i )a ,+] ,  is clearly responsible for that fact, as we can verify with 
the aid of the following YST: 

area A = area 8 

According to the conclusion of Jarvis and Murray (1989,  it is impossible to define 
Q( n )  T-YST in agreement with the standard definitions, and similarly for the P (  n )  class 

(ix) Even for the basic LSA, the level of generality of the previously described S R R  

and their YST is probably not very high: the S R R  which appear when making tensor 
products of I R ,  as on the R H S  of (8.9), can also appear in the reduction of the tensor 
product of a H W - M R  by a L W - M R .  Therefore, it could perhaps be advantageous to 
define YST like this: 

O f  LSA. 

for describing the indecomposable subspaces of 

1 . 1  I 

which are not themselves ( P ) H W  representations. 
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I f  it can be conjectured that some YST, like those above, are needed to describe 
the SRR built by induction on an indecomposable finite representation of the non- 
semisimple subsuperalgebra P = Go+ G,, of G (i.e. the SRR that generalise the su(2/ 1) 
SRR made of three or four irreducible subspaces) it is hard to imagine any suitable 
YST able to describe the representations characterised by a non-diagonal Cartan 
subalgebra. 
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Appendix 1 

Table A l .  Classification of the simple L S A t .  

classical LSA 

(Go is reductive I 

A ( m , n ) m Z n , B ( m , n )  

C ( n ) ,  D(m, n ) m  # n +  1 

0 ( 2 , 1 ,  a ) ,  G(3).  F ( 4 )  
any simple LA 

K -0: A(n, n ) ,  D(n+ 1, n )  

p(n) ,  O ( n )  

(lrl( basic LSA ( 3 8 )  

strange LSA (3s): 

Cartan-type LSA (G,j is not reductive; g B ) : W ( n ) ,  S ( n ) ,  $ n ) ,  H ( n )  
~~ ~ 

? In table A l ,  B denotes any non-degenerate supertrace form and K is the Killing form 
(other types of bilinear forms are defined in Leites and Serganova (1984)); if K is degenerate 
we note this by K EO, otherwise K 20. The possible range of the parameters m, n, a is 
specified in tables A6 and A7. 

Table A2. Isomorphisms of simple LSA. 

A ( m , n ) . . A ( n , m ) ; A ( O , 1 ) ; 5 C ( 2 ) ; 1  W ( 2 j ; A ( l , l ) = H ( 4 ) ;  
B ( 0 ,  1) 
] / a ,  - ( I  + a ) ,  -l/(l+ a ) ,  -(I+ a ) / a  or - a / ( t  + a ) ;  V a  E C -{O, -1, CO}, 

(for any a E R, there is an unique p 3 1); P (2 j  = S ( 3 ) .  

s(2); D (2 .1 ,  1) = D(2 ,  1); D ( 2 ,  1, a )  = D(2 ,  1, p )  if p = a, 
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Table A3. Other notations. 

Leites and 
Scheunert Serganova 

Kac (1977, 1978) (1979,1984,1985) (1984) This paper 

Table A4. The basic Lie superalgebras. 

G Go Go module G ,  dim G sdim G 

~~~~~ ~ 

+ When 8 = m - n < 0, then dim so(6) = dim(adjoint) =dim 8. but dim 8 =iSCS - 1) = 

4( m - n ) (  m - n - 1) = f( n - m)( n - m + 1)( =dim sp( n - m) when 6 = 2k). The dimension of the representa- 
tions of so(6) is formally the same as for so(d) ,  d >O, but now this is S which has to figure in the ‘product 
of the boxes’. Example: dim( m ) , R = f [ 6 ( 8 + 1 ) ] - 1 = ~ ( m - n ) ( m - n + l ) - l .  
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Table AS. Dynkin diagrams and Cartan matrices o f  simple LA.  

so(2n - 1): 

0-. , .€+o 

s o ( 2 n ) :  

0-0-. . .< 
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8 x E 

d + 
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Table A7. The exceptional Lie superalgebras. 

D(2,  1,a) A 6 = { * 2 ~ , }  
a +  A ~ = { * E , * E ~ * E ~ }  a ,  = E ,  + E 2 +  E )  

(0, -1, m) 

System 1, 2 or 3 ,<, 0 

a2 = - 2 E ,  
-1 2 0 

a3 = - 2 ~ , ,  I # j -1 0 2 

System 4 
a , = E l + E 2 + E )  

(12 = E ,  - E 2  - E 3  

a ) =  - E l  - E 2 + E )  

a, = E ,  - E 2  

a* = - E ,  

a )  = ; ( E , +  E 2 +  E ) +  6 )  
a4= - 8  

a ,  = E )  - E 2  

(12 = € 2  - E ,  

- E * -  E j - 8 )  

a4 =;(El + E * +  E 3 +  6 )  

a ,  = E ,  - E 2  

a2 =;(-El + E 2 +  E ) -  8) 
a )  = $ ( E ,  + E 2 +  E ) + S )  

a4 = + ( - E ,  - E 2  - E ) + 8 )  -1  

0 
-2  
-1  
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Table A8. The Q, C and Hs generators, ( h ,  = H e , )  

osp(2/2n) 

Table A9. The consistency conditions 

let G i f  then, necessarily 

B ( m ,  n )  b s m - 1  
D ( m ,  n )  b < m - 1  

b = m - 1  
D(2, 1 ,  a )  b=O 

b = l  
Fi4) b=O 

b = l  
b = 2  
b = 3  

(33)  b=O 
b =  1 
b = 2  

= ,  ' = a,,,, = 0 
a,+h+, = ' ' = a,,, = 0 

a2 = a ,  = 0 
a , + l = a ( a , + l )  
a2 = a,  = a4 = 0 
impossible 
a,=a,=O 
a 2 = 2 a 4 + l  
a2 = a,  = 0 
impossible 
a2 = 0 

an+,-1 =an+, 
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Table A10. The positive odd roots (if not otherwise specified, the range of the indices are 
the ones in the brackets). 

s u ( m / n ) ( l  s is m, 1 S j s  n )  
E ,  - 6 ,  = a ,  +a,+, +. . .+ a, +. . .+  a m + , - 2 + a m + l - ~  

E (  m, n )( 1 s i S n, 1 6 j S m > 0) 
6 ,  - E ,  = a, + a ,+ ,+ .  . .+a,, +. . .+  a,+,_,+ an+, - ,  
6 ,  = a , +  . . . +  a,,+ . . . +  a,+,_,+a,+, 
S , + E , = a , + .  . .+a ,+.  . .+ a , + , - 1 + 2 ( a , + , + ~ .  .+ an+m-l)+(t"+,  

C ( n ) ( l  s j s  n - 1 )  
E - 6, = a, +a,+.  . .+ a,-, fa, 
E +a,_, = a, +a2+. . . + a , _ , + a ,  
E + 6, = a ,  +. . .+ a,-, + 2 ( a ,  + .  . .+ an+,-,) + an+,,,. j 

D(m,  n ) ( l  S is n, l s j c  m )  
6, - E ,  = a, +a,+ ,+ .  . .+a,, +.  . .+a,+,-,+ a,+,-, 
S , + E , = ( I , +  . . . +  a,+ . . .+a,+,_,+a,+, 
a , + €  ,),_ I = a , +  . . . +  a,,+ . . . +  a,,+ ,,,- 1+a,,+,, 
6 , + E j = 0 , +  . . .+ .  . . + a . + , - , + 2 ( a n + , + . .  .+a , ,+, -z )+a, ,+, - ,+a,+, , , j~m-2  

D ( 2 ,  1 ,  o ) ( p ,  q = * I )  
E ,  + P E , +  qE, = a ,  + ma,+ n a , ,  where m = $( 1 - p ) ,  n = f (  1 - q )  

F ( 4 ) ( p , q , r = * l )  
6 + P E ,  + qEZ+ r E 3  = a l  + ka,+ ma,+ na4, 
where k = ; ( 3 - p -  q - r ) ,  m = $ ( 2 -  q - r ) ,  n = f ( l  - r )  

G ( 3 )  (the seven positive roots are 6 ;  6 *  E , ,  i = 1 , 2 , 3 )  
6 +PE,  + qE2 + re, = a, + ma, + na,, where m = 2 - 2 p +  q + r and n = 1 - p  + r 
(remember that E ,  + E ,  + E ,  = 0) 

n - 2  

Table A l l .  The non-typicality conditions. 

and a then ( . Z + p ,  a ) = ~  i f  let  G 

!I - I n + m  

1 n , ( a , + l ) + a , -  1 n , ( a , + 1 ) = 0  
/ = I  , = ? / + I  
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Table A l f .  Type-2 LSA non-typicality conditions (other formulation). 

n - l  " + ,,, - I 
B ( m , n )  & - E ,  1 a , + b +  1 a , + f a , + , + ( n + l - i - j ) = O  

, = I  , = n + i  

, ? - I  

1 a,  + b - ( n  - m - i + f )  = 0 
,= ,  8,  

4 + E l  

n - 1  n t m - 1  

a , + b -  1 a , - f a n + , + ( n - 2 m - i - j ) = 0  
, = /  1 = n + ,  

n - l  n + m - 2  

D ( m . n )  8 , - ~ ,  1 a , +  b +  1 a , + i ( a , + , - ,  + a , + , ) + ( n + t  - - I  -j) = O  
, = /  , = n + ,  

n - 1  

1 a,  + b T f (  -a,t + ,n - I + a, + ,n ) + ( n + 1 - m - i) = 0 8 ,  - E ,  

8, + c m  

8, + El  

,= ,  
$ 1  - I 

1 a,+  b+i(a,,, , ,_, - a , + , ) + ( n +  1 - m -  i )  = O  
/ = ,  

n - 1  n + m - 2  

1 a , +  b -  1 

( b  + p a , + p  - 1 )  + a( b + q a ,  + q - 1) = 0 

3 6 +  ( p +  q +  r ) a 2 + 2 ( q +  r ) a 3 + 2 r a , +  ( p + 3 q +  Sr) -9  = 0 

2 b +  (2p - q  - r ) a , + 3 ( p  - r ) a 3 + ( 5 p +  q + 4 r )  - 5  = O  

a,  - f ( a n + , - ,  + a , + , ) +  ( n  - 2 m +  1 - i + j )  = O  
, = /  , = U + ,  

D ( 2 , 1 , a )  E ~ + P E , + ~ E )  

F ( 4 )  

G ( 3 )  

S + p e ,  + q e 2 +  re3 

8 + p a l  + qE2+ re3 

Appendix 2 

Example 1. Consider 

S+6*+3)-,  + (* 

which can be described by the following YST: 

In particular b, + (2 - 1 ) = b; + (3 - 2) is the only non-typicality condition. Therefore 

According to the third method, the YST characterising I (  A )  can be easily determined. 
there is only one invariant subspace. 

Starting from the YST E33 a b C B of V(A)MR, we have to remove successively 

the boxes due to 

A and a I 

B 
b 111 

C 111 

11 
... 

C 11 . .. 
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Thus. according to the third method, I(,$) is specified by [ T I ,  i.e. [(A),= - 
(2,6*)-1.  This can be independently checked by considering the tensor product of 

E = ( i ,  1 ) ~ + ( 2 , 3 ) ~ + ( 1 , 6 ) ~  b ~ 8 = ( 1 , 3 ) - , + ( 2 , 3 * ) - ~ + ( 3 ,  Indeed, 

Appendix 3 

The following su(1/3) tensor products, expressed in terms of HW-YST, 
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appear to  look simpler when expressed in terms of T-YST: 

U 

U 

U U 

U U 

U 

U 
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